生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 121-128.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0383
段稀源1,2(
), 罗振1, 唐薇1, 卢合全1, 孔祥强1,2(
)
收稿日期:2025-04-12
出版日期:2025-10-26
发布日期:2025-10-28
通讯作者:
孔祥强,男,博士,研究员,研究方向 :作物生理生态;E-mail: kongqiang_1995@163.com作者简介:段稀源,男,硕士,研究方向 :作物生理生态;E-mail: 2022020904@stu.sdnu.edu.cn
基金资助:
DUAN Xi-yuan1,2(
), LUO Zhen1, TANG Wei1, LU He-quan1, KONG Xiang-qiang1,2(
)
Received:2025-04-12
Published:2025-10-26
Online:2025-10-28
摘要:
活性多肽在调控植物生长发育、生物和非生物胁迫、根系养分吸收和豆科植物根系结瘤固氮等方面均发挥着重要的作用。C-末端编码肽(C-terminal encoded peptide, CEP)是由前体肽通过翻译后剪切修饰而成的含有15个氨基酸的多肽。CEP在响应低氮胁迫、非生物胁迫和豆科植物根瘤形成等方面均发挥着重要调控作用。低氮和盐胁迫可诱导根系CEP基因表达。根系合成的CEP多肽可通过木质部转运到地上部,与地上部CEP受体1(CEPR1)和CEP受体2(CEPR2)结合,通过CEP-CEPR信号通路调控植物根系生长、养分吸收和豆科植物根系结瘤。根系形态、根系养分吸收能力以及根际养分含量是影响植物养分吸收的关键,说明CEP在调控植物养分吸收中起着非常重要的作用。本文重点综述CEP在调控根系生长发育、根系养分吸收和根瘤形成中的作用机理,为下一步充分利用CEP功能,提高作物养分利用效率,促进农业绿色可持续发展提供理论依据。
段稀源, 罗振, 唐薇, 卢合全, 孔祥强. CEP调控植物养分吸收机理研究进展[J]. 生物技术通报, 2025, 41(10): 121-128.
DUAN Xi-yuan, LUO Zhen, TANG Wei, LU He-quan, KONG Xiang-qiang. Research Progress in the Mechanism of CEP Regulating Plant Nutrient Uptake[J]. Biotechnology Bulletin, 2025, 41(10): 121-128.
图1 CEP信号调控根系硝态氮吸收和生长的机理A: 根系养分或盐分差异分布条件下,低氮或盐胁迫一侧根系CEP基因表达上调,合成CEP肽通过木质部转运至地上部,与CEP受体CEPR相互作用,致使CEPD基因表达上调,生成CEPD多肽并通过韧皮部转运回根系发挥作用。首先,高氮低盐条件与CEPD多肽能够特异性上调编码NRT2.1的转录本,从而促进NRT2.1蛋白合成;其次,CEPD多肽能够促进NRT1.1和NRT1.5的表达,同时低氮环境与CEPD诱导CEPH表达,激活NRT2.1的转运活性,从而促进硝态氮的吸收与转运。此外,CEPD还能通过抑制初生根生长来影响根系生长。B: 根系合成的CEP转运至地上部,与CEP受体CEPR相互作用,一方面抑制侧根生长;另一方面CEPR诱导CEPD表达来抑制次生根向地性生长;细胞分裂素通过AHK2和AHK3也可促进CEPD基因在根系表达,提高根系CEPD含量,抑制次生根向地性生长
Fig. 1 Mechanism of CEP signaling in regulating nitrate uptake and root growthA: Under heterogeneous nutrient or salt distribution in the root system, low nitrogen (N) or salt stress on one side induces the upregulation of CEP gene expression in the stressed roots. The synthesized CEP peptides are transported to the shoot via the xylem, where they interact with the CEP receptor (CEPR). This interaction triggers the upregulation of CEPD gene expression, leading to the production of CEPD peptides, which are then transported back to the roots via the phloem to exert their effects. First, under high-N/low-salt conditions, CEPD peptides specifically upregulate the transcript encoding NRT2.1, promoting NRT2.1 protein synthesis. Second, CEPD peptides enhance the expressions of NRT1.1 and NRT1.5, thereby improving nitrate uptake and transport. Additionally, CEPH is induced under low-N conditions and further activates NRT2.1 transport activity in response to CEPD. Moreover, CEPD suppresses primary root growth, thus modulating root system architecture. B: The synthesized CEP peptides in the roots, are transported to the shoot. There, they interact with the CEP receptor (CEPR), generating a signal that suppresses lateral root growth. Furthermore, CEPR activates CEPD expression, which inhibits the gravitropic growth of secondary roots. Concurrently, cytokinins promote CEPD expression in the roots via AHK2 and AHK3, increasing CEPD levels in the roots and further suppressing secondary root gravitropism
图2 CEP调控植物与根瘤菌共生结瘤在调控根系结瘤过程中,CLEs和CEP家族肽表现出拮抗作用。低氮条件诱导植物根系CEP1表达,其产物通过木质部转运至地上部与CAR2结合,促进miR2111的合成并向根部运输,进而降低TML1和TML2蛋白积累以促进结瘤。同时,CRA2通过抑制乙烯信号依赖的相关基因表达来减弱乙烯对结瘤的抑制作用。在结瘤自调控途径中,根系产生的CLE12和CLE13通过激活地上部SUNN来抑制miR2111表达,从而抵消CEP信号对miR2111的上调作用。当外界氮含量较高时,NLP1一方面激活结瘤负调节因子CLE35表达,另一方面又抑制正调控因子CEP1的表达来实现对根系结瘤的调控
Fig. 2 CEP regulates symbiotic nodulation between plants and rhizobiaIn the regulation of root nodulation, CLEs and CEP family peptides demonstrate antagonistic effects. Under low nitrogen conditions, CEP1 expression is induced in plant roots, and its product is transported to the shoots via the xylem, where it binds to CAR2 to promote miR2111 synthesis and subsequent transport back to the roots, thereby reducing TML1 and TML2 protein accumulation to facilitate nodulation. Meanwhile, CRA2 suppresses ethylene-dependent signaling genes to attenuate the inhibitory effect of ethylene on nodulation. In the autoregulation pathway of nodulation, root-derived CLE12 and CLE13 activate SUNN in the shoots to inhibit miR2111 expression, thereby counteracting the CEP-mediated upregulation of miR2111. When external nitrogen levels are high, NLP1 activates the expression of the negative regulator CLE35 while simultaneously suppress the positive regulator CEP1 to modulate root nodulation
| [1] | Gautrat P, Laffont C, Frugier F, et al. Nitrogen systemic signaling: from symbiotic nodulation to root acquisition [J]. Trends Plant Sci, 2021, 26(4): 392-406. |
| [2] | Delay C, Imin N, Djordjevic MA. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants [J]. J Exp Bot, 2013, 64(17): 5383-5394. |
| [3] | Imin N, Mohd-Radzman NA, Ogilvie HA, et al. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula [J]. J Exp Bot, 2013, 64(17): 5395-5409. |
| [4] | Tabata R, Sumida K, Yoshii T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling [J]. Science, 2014, 346(6207): 343-346. |
| [5] | Chapman K, Taleski M, Ogilvie HA, et al. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth [J]. J Exp Bot, 2019, 70(15): 3955-3967. |
| [6] | Pan X, Deng Z, Wu R, et al. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses [J]. Plant Physiol Biochem, 2024, 209: 108525. |
| [7] | Patel N, Mohd-Radzman NA, Corcilius L, et al. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome [J]. Mol Cell Proteomics, 2018, 17(1): 160-174. |
| [8] | Huang Y, Ji Z, Zhang S, et al. Function of hormone signaling in regulating nitrogen-use efficiency in plants [J]. J Plant Physiol, 2024, 294: 154191. |
| [9] | Jia Z, Giehl RFH, Von Wirén N. The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis [J]. Plant Physiol, 2020, 183(3): 998-1010. |
| [10] | Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition [J]. Nat Plants, 2017, 3: 17029. |
| [11] | Li C, Hu Q, Luo Z, et al. C-terminally encoded peptides act as signals to increase cotton root nitrate uptake under nonuniform salinity [J]. Plant Physiol, 2023, 194(1): 530-545. |
| [12] | Ohkubo Y, Kuwata K, Matsubayashi Y. A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1 [J]. Nat Plants, 2021, 7(3): 310-316. |
| [13] | Furumizu C, Aalen RB. Peptide signaling through leucine-rich repeat receptor kinases: insight into land plant evolution [J]. New Phytol, 2023, 238(3): 977-982. |
| [14] | Luo Z, Moreau C, Wang J, et al. NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate [J]. New Phytol, 2022, 234(5): 1547-1552. |
| [15] | Luo Z, Wang J, Li F, et al. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations [J]. Plant Cell, 2023, 35(2): 776-794. |
| [16] | Taleski M, Jin M, Chapman K, et al. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions [J]. J Exp Bot, 2024, 75(2): 538-552. |
| [17] | Sui Z, Wang T, Li H, et al. Overexpression of peptide-encoding OsCEP6.1 results in pleiotropic effects on growth in rice (O. sativa) [J]. Front Plant Sci, 2016, 7: 228. |
| [18] | Xu R, Li Y, Sui Z, et al. A C-terminal encoded peptide, ZmCEP1, is essential for kernel development in maize [J]. J Exp Bot, 2021, 72(15): 5390-5406. |
| [19] | Ogilvie H A, Imin N, Djordjevic MA. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes [J]. BMC Genomics, 2014, 15(1): 870. |
| [20] | Lu F, Wang X, Liu B, et al. A C-Terminally Encoded Peptide, MeCEP6, promotes nitrate uptake in cassava roots [J]. Plants (Basel), 2025, 14(8). |
| [21] | Chu X, Li M, Zhang S, et al. HBI1-TCP20 interaction positively regulates the CEPs-mediated systemic nitrate acquisition [J]. J Integr Plant Biol, 2021, 63(5): 902-912. |
| [22] | Jacquot A, Chaput V, Mauries A, et al. NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana [J]. New Phytol, 2020, 228(3): 1038-1054. |
| [23] | Zhang L, Yu Z, Xu Y, et al. Regulation of the stability and ABA import activity of NRT1.2/NPF4.6 by CEPR2-mediated phosphorylation in Arabidopsis [J]. Mol Plant, 2022, 15(10): 1635. |
| [24] | Roy S, Griffiths M, Torres-Jerez I, et al. Application of Synthetic Peptide CEP1 increases nutrient uptake rates along plant roots [J]. Front Plant Sci, 2021, 12: 793145. |
| [25] | Kawai M, Tabata R, Ohashi M, et al. Regulation of ammonium acquisition and use in Oryza longistaminata ramets under nitrogen source heterogeneity [J]. Plant Physiol, 2022, 188(4): 2364-2376. |
| [26] | Delay C, Chapman K, Taleski M, et al. CEP3 levels affect starvation-related growth responses of the primary root [J]. J Exp Bot, 2019, 70(18): 4763-4774. |
| [27] | Yu Z, Qu X, Lv B, et al. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence [J]. Plant Cell, 2024, 36(9): 3162-3176. |
| [28] | Kiba T, Krapp A. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture [J]. Plant Cell Physiol, 2016, 57(4): 707-714. |
| [29] | Wang N Q, Kong C H, Wang P, et al. Root exudate signals in plant-plant interactions [J]. Plant Cell Environ, 2021, 44(4): 1044-1058. |
| [30] | Oh E, Seo P J, Kim J. Signaling peptides and receptors coordinating plant root development [J]. Trends Plant Sci, 2018, 23(4): 337-351. |
| [31] | Lu S, Xiao F. Small peptides: orchestrators of plant growth and developmental processes [J]. Int J Mol Sci, 2024, 25(14). |
| [32] | Mei Z, Li B, Zhu S, et al. A genome-wide analysis of the CEP gene family in cotton and a functional study of GhCEP46-D05 in plant development [J]. Int J Mol Sci, 2024, 25(8). |
| [33] | Li X, Cai W, Liu Y, et al. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes [J]. Proc Natl Acad Sci U S A, 2017, 114(10): 2765-2770. |
| [34] | Mohd-Radzman N A, Laffont C, Ivanovici A, et al. Different pathways act downstream of the CEP Peptide Receptor CRA2 to regulate lateral root and nodule development [J]. Plant Physiol, 2016, 171(4): 2536-2548. |
| [35] | Baena-González E, Rolland F, Thevelein JM, et al. A central integrator of transcription networks in plant stress and energy signalling [J]. Nature, 2007, 448(7156): 938-942. |
| [36] | Huang A, Cui T, Zhang Y, et al. CRISPR/Cas9-engineered large fragment deletion mutations in Arabidopsis CEP peptide-encoding genes reveal their role in primary and lateral root formation [J]. Plant Cell Physiol, 2023, 64(1): 19-26. |
| [37] | Zhu F, Ye Q, Chen H, et al. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula [J]. J Exp Bot, 2021, 72(10): 3661-3676. |
| [38] | Roychoudhry S, Kieffer M, Del Bianco M, et al. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean [J]. Sci Rep, 2017, 7: 42664. |
| [39] | Chapman K, Ivanovici A, Taleski M, et al. CEP receptor signalling controls root system architecture in Arabidopsis and Medicago [J]. New Phytol, 2020, 226(6): 1809-1821. |
| [40] | Chapman K, Taleski M, Frank M, et al. C-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormone signaling intersect to promote shallow lateral root angles [J]. J Exp Bot, 2024, 75(2): 631-641. |
| [41] | Chang L, Ramireddy E, Schmülling T. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes [J]. J Exp Bot, 2013, 64(16): 5021-5032. |
| [42] | Lin J, Frank M, Reid D. No home without hormones: How plant hormones control legume nodule organogenesis [J]. Plant Commun, 2020, 1(5): 100104. |
| [43] | Taleski M, Chapman K, Novák O, et al. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth [J]. Nat Commun, 2023, 14(1): 1683. |
| [44] | Ota R, Ohkubo Y, Yamashita Y, et al. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis [J]. Nat Commun, 2020, 11(1): 641. |
| [45] | Laffont C, Frugier F. Rhizobium symbiotic efficiency meets CEP signaling peptides [J]. New Phytol, 2024, 241(1): 24-27. |
| [46] | Roy S, Liu W, Nandety RS, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation [J]. Plant Cell, 2020, 32(1): 15-41. |
| [47] | Cervantes-Pérez SA, Zogli P, Amini S, et al. Single-cell transcriptome atlases of soybean root and mature nodule reveal new regulatory programs that control the nodulation process [J]. Plant Commun, 2024, 5(8): 100984. |
| [48] | Soyano T, Akamatsu A, Takeda N, et al. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development [J]. Science, 2024, 385(6706): 288-294. |
| [49] | Lin J, Bjørk P K, Kolte MV, et al. Zinc mediates control of nitrogen fixation via transcription factor filamentation [J]. Nature, 2024, 631(8019): 164-169. |
| [50] | Ivanovici A, Laffont C, Larrainzar E, et al. The medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number [J]. Plant Physiol, 2023, 191(3): 2012-2026. |
| [51] | Tsikou D, Yan Z, Holt DB, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA [J]. Science, 2018, 362(6411): 233-236. |
| [52] | Penmetsa RV, Uribe P, Anderson J, et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations [J]. Plant J, 2008, 55(4): 580-595. |
| [53] | Cui S, Inaba S, Suzaki T, et al. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis [J]. Curr Opin Plant Biol, 2023, 76: 102473. |
| [54] | Zhu F, Deng J, Chen H, et al. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula [J]. Plant Cell, 2020, 32(9): 2855-2877. |
| [55] | Laffont C, Huault E, Gautrat P, et al. Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways [J]. Plant Physiol, 2019, 180(1): 559-570. |
| [56] | Hazak O, Hardtke CS. CLAVATA 1-type receptors in plant development [J]. J Exp Bot, 2016, 67(16): 4827-4833. |
| [57] | Hussain S, Wang W, Ahmed S, et al. PIP2, an auxin induced plant peptide hormone regulates root and hypocotyl elongation in Arabidopsis [J]. Front Plant Sci, 2021, 12: 646736. |
| [58] | Schnabel E, Journet EP, De Carvalho-Niebel F, et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length [J]. Plant Mol Biol, 2005, 58(6): 809-822. |
| [59] | Laffont C, Ivanovici A, Gautrat P, et al. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically [J]. Nat Commun, 2020, 11(1): 3167. |
| [60] | Gautrat P, Laffont C, Frugier F. Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector [J]. Curr Biol, 2020, 30(7): 1339-1345.e1333. |
| [61] | Imin N, Patel N, Corcilius L, et al. CLE peptide tri-arabinosylation and peptide domain sequence composition are essential for SUNN-dependent autoregulation of nodulation in Medicago truncatula [J]. New Phytol, 2018, 218(1): 73-80. |
| [62] | Luo Z, Tang W, Wang XW, et al. Effects of N application methods on cotton yield and fertilizer N recovery efficiency in salinity fields with drip irrigation under mulch film using 15N [J]. Front Plant Sci, 2024, 15:1394285. |
| [1] | 沈月, 陶宝杰, 华夏, 吕冰, 刘立军, 陈云. 独脚金内酯与激素互作调控根系生长的研究进展[J]. 生物技术通报, 2022, 38(8): 24-31. |
| [2] | 高聪, 萧楚健, 鲁帅, 王苏蓉, 袁卉华, 曹云英. 氧化石墨烯对拟南芥生长的促进作用[J]. 生物技术通报, 2022, 38(6): 120-128. |
| [3] | 罗振鹏, 谢芳. 硝酸盐调控豆科植物与根瘤菌共生固氮的机制研究[J]. 生物技术通报, 2019, 35(10): 34-39. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||