[1] Oldroyd GE.Speak, friend, and enter:signalling systems that promote beneficial symbiotic associations in plants[J]. Nat Rev Microbiol, 2013, 11(4):252-263. [2] Oldroyd GE, Downie JA.Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annu Rev Plant Biol, 2008, 59:519-546. [3] Oka-Kira E, Kawaguchi M.Long-distance signaling to control root nodule number[J]. Curr Opin Plant Biol, 2006, 9(5):496-502. [4] Mortier V, Holsters M, Goormachtig S.Never too many? How legumes control nodule numbers[J]. Plant Cell Environ, 2012, 35(2):245-258. [5] Nishimura R, Hayashi M, Wu GJ, et al.HAR1 mediates systemic regulation of symbiotic organ development[J]. Nature, 2002, 420(6914):426-429. [6] Streeter J, Wong PP.Inhibition of legume nodule formation and N2 fixation by nitrate[J]. Critical Reviews in Plant Sciences, 1988, 7(1):1-23. [7] Wang SP, Stacey G.Ammonia regulation of nod genes in Bradyrhizobium japonicum[J]. Mol Gen Genet, 1990, 223(2):329-331. [8] Nishida H, Suzaki T.Nitrate-mediated control of root nodule symbiosis[J]. Current Opinion in Plant Biology, 2018, 44:129-136. [9] Cho MJ, Harper JE.Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants[J]. Plant Physiol, 1991, 95(4):1106-1112. [10] Jeudy C, et al.Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses[J]. New Phytol, 2010, 185(3):817-828. [11] Lin JS, Li XL, Luo ZP, et al.NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nat Plants, 2018, 4(11):942-952. [12] Nishida H, Tanaka S, Handa Y, et al.A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nat Commun, 2018, 9(1):499. [13] Reid DE, Ferguson BJ, Hayashi S, et al.Molecular mechanisms controlling legume autoregulation of nodulation[J]. Ann Bot, 2011, 108(5):789-795. [14] Caetano-Anolles G, Gresshoff PM.Plant genetic control of nodulation[J]. Annu Rev Microbiol, 1991, 45:345-382. [15] Oka-Kira E, et al.klavier(klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction[J]. Plant J, 2005, 44(3):505-515. [16] Magori S, et al.Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicus[J]. Mol Plant Microbe Interact, 2009, 22(3):259-268. [17] Yoshida C, Funayama-Noguchi S, Kawaguchi M. plenty, a novel hypernodulation mutant in Lotus japonicus[J]. Plant Cell Physiol, 2010, 51(9):1425-1435. [18] Soyano T, Hirakawa H, Sato S, et al.Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production[J]. Proc Natl Acad Sci USA, 2014, 111(40):14607-14612. [19] Okamoto S, Shinohara H, Mori T, et al.Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nat Commun, 2013, 4:2191. [20] Sasaki T, Suzaki T, Soyano T, et al.Shoot-derived cytokinins systemically regulate root nodulation[J]. Nat Commun, 2014, 5:4983. [21] Schnabel E, Journet EP, de Carvalho-Niebel F, et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length[J]. Plant Mol Biol, 2005, 58(6):809-822. [22] Lin YH, Ferguson BJ, Kereszt A, et al.Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction[J]. New Phytol, 2010, 185(4):1074-1086. [23] Searle IR, Men AE, Laniya TS, et al.Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase[J]. Science, 2003, 299(5603):109-112. [24] Ferguson BJ, Li D, Hastwell AH, et al.The soybean(Glycine max)nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean(Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK[J]. Plant Biotechnol J, 2014, 12(8):1085-1097. [25] Reid DE, Ferguson BJ, Gresshoff PM.Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation[J]. Mol Plant Microbe Interact, 2011, 24(5):606-618. [26] Mortier V, Den Herder G, Whitford R, et al.CLE peptides control Medicago truncatula nodulation locally and systemically[J]. Plant Physiol, 2010, 153(1):222-237. [27] de Bang TC, Lundquist PK, Dai X, et al. Genome-wide identification of medicago peptides involved in macronutrient responses and nodulation[J]. Plant Physiol, 2017, 175(4):1669-1689. [28] Tsikou D, Yan Z, Holt DB, et al.Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018. 362(6411):233-236. [29] Carroll BJ, McNeil DL, Gresshoff PM. Isolation and properties of soybean[Glycine max(L. )Merr. ]mutants that nodulate in the presence of high nitrate concentrations[J]. Proc Natl Acad Sci USA, 1985, 82(12):4162-4166. [30] Schnabel E, Mukherjee A, Smith L, et al.The lss supernodulation mutant of Medicago truncatula reduces expression of the SUNN gene[J]. Plant Physiol, 2010, 154(3):1390-1402. [31] Schnabel EL, Kassaw TK, Smith LS, et al.The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family[J]. Plant Physiol, 2011, 157(1):328-340. [32] Krusell L, Madsen LH, Sato S, et al.Shoot control of root development and nodulation is mediated by a receptor-like kinase[J]. Nature, 2002, 420(6914):422-426. [33] Okamoto S, Ohnishi E, Sato S, et al.Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation[J]. Plant Cell Physiol, 2009, 50(1):67-77. [34] Cabeza R, Koester B, Liese R, et al.An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula[J]. Plant Physiol, 2014, 164(1):400-411. [35] Schauser L, Roussis A, Stiller J, et al.A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758):191-195. [36] Mu X, Luo J.Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cell Mol Life Sci, 2019, 76(19):3753-3764. [37] Schauser L, Wieloch W, Stougaard J.Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus[J]. J Mol Evol, 2005, 60(2):229-237. [38] Marchive C, Roudier F, Castaings L, et al.Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nat Commun, 2013, 4:1713. [39] Castaings L, Camargo A, Pocholle D, et al.The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. Plant J, 2009. 57(3):426-435. [40] Yan D, Easwaran V, Chau V, et al.NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nat Commun, 2016, 7:13179. [41] Suzuki W, Konishi M, Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor[J]. Plant Signal Behav, 2013, 8(10). piie25925. [42] Soyano T, Shimoda Y, Hayashi M.NODULE INCEPTION antagonistically regulates gene expression with nitrate in Lotus japonicus[J]. Plant Cell Physiol, 2015, 56(2):368-376. [43] Huault E, Laffont C, Wen J, et al.Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase[J]. PLoS Genet, 2014, 10(12):e1004891. [44] Tabata R, Sumida K, Yoshii T, et al.Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207):343-346. [45] Ohkubo Y, Tanaka M, Tabata R, et al.Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nat Plants, 2017, 3:17029. [46] Imin N, Mohd-Radzman NA, Ogilvie HA, et al.The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula[J]. J Exp Bot, 2013, 64(17):5395-5409. [47] Mohd-Radzman NA, Laffont C, Ivanovici A, et al.Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development[J]. Plant Physiol, 2016, 171(4):2536-2548. [48] Oldroyd GE, Engstrom EM, Long SR.Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula[J]. Plant Cell, 2001, 13(8):1835-1849. [49] Penmetsa RV, Cook DR.A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont[J]. Science, 1997, 275(5299):527-530. [50] Ligero F, Caba JM, Lluch C, et al.Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylgly-cine[J]. Plant Physiol, 1991, 97(3):1221-1225. |