生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 129-142.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0321
张雨珊1(
), 张雯雯1, 刘岩1, 申玉璞1, 孙鲁2, 黄伟红2, 李中媛1(
)
收稿日期:2025-03-27
出版日期:2025-10-26
发布日期:2025-10-28
通讯作者:
李中媛,女,博士,副教授,研究方向 :酶工程;E-mail: lizhongyuan@tust.edu.cn作者简介:张雨珊,女,硕士研究生,研究方向 :酶工程;E-mail: 17772618639@163.com
基金资助:
ZHANG Yu-shan1(
), ZHANG Wen-wen1, LIU Yan1, SHEN Yu-pu1, SUN Lu2, HUANG Wei-hong2, LI Zhong-yuan1(
)
Received:2025-03-27
Published:2025-10-26
Online:2025-10-28
摘要:
伏马毒素是由镰刀属真菌产生的一类具有显著危害的真菌次级代谢产物。这类毒素在玉米、小麦、高粱等多种谷物及其制品中污染广泛,因其对农产品安全的严重威胁以及对人类和动物健康的巨大危害,已成为全球食品安全领域面临的严峻挑战之一。随着全球范围内对镰刀菌毒素污染,特别是伏马毒素污染问题的日益重视和监管标准的趋严,系统梳理其研究进展,为风险评估和防控实践提供科学依据显得尤为迫切。本文首先系统解析了伏马毒素的种类及结构特征;然后阐明聚酮合酶基因簇调控的生物合成途径;从分子、细胞和器官3个水平揭示其毒性机制;比较分析色谱-质谱联用技术、酶联免疫快速检测等多种常见检测方法的适用场景和技术瓶颈;最后总结包括物理吸附、化学降解和生物防治在内的全链条综合防控体系。本研究通过多角度解析伏马毒素的污染规律、作用本质和防控策略,不仅为科学评估其风险奠定了坚实的理论基础,同时对于开发高效实用的减毒脱毒技术、保障农产品质量安全、维护人类和动物的健康福祉具有重要实践意义。
张雨珊, 张雯雯, 刘岩, 申玉璞, 孙鲁, 黄伟红, 李中媛. 伏马毒素的污染现状、毒性作用机制及防控策略研究进展[J]. 生物技术通报, 2025, 41(10): 129-142.
ZHANG Yu-shan, ZHANG Wen-wen, LIU Yan, SHEN Yu-pu, SUN Lu, HUANG Wei-hong, LI Zhong-yuan. Advances in Fumonisins Contamination: Current Status, Toxicological Mechanisms, and Mitigation Strategies[J]. Biotechnology Bulletin, 2025, 41(10): 129-142.
图3 伏马毒素的致病毒性机理及其危害Molecular:分子水平。Cellular:细胞水平。Disease:疾病。De novo synthesis pathway:从头合成途径;Salvage pathway:补救合成途径;FB:伏马毒素;Serine+Palmitoyl CoA:丝氨酸+棕榈酰辅酶A;Serine palmitoyl transferase:丝氨酸棕榈酰转移酶;3-ketosphinganine:3-酮鞘氨醇;Reductase:还原酶;Sa:二氢鞘氨醇;Sphinganine kinasa:二氢鞘氨醇激酶;Phosphatase:磷酸酶;Sphinganine-1P:二氢鞘氨醇-1-磷酸;Fatty Acyl-CoA:脂酰辅酶A;Ceramide synthase:神经酰胺合酶;Dihydroceramides:二氢神经酰胺;Dihydroceramide desaturase:二氢神经酰胺去饱和酶;Ceramides:神经酰胺;Ceramidase:神经酰胺酶;So:鞘氨醇;Sphingomyelin synthase:鞘磷脂合酶;Sphingomyelinase:鞘磷脂酶;Sphingomyelins:鞘磷脂;Glucosylceromide synthase:葡萄糖基神经酰胺合酶;β-glucosidase:β-葡萄糖苷酶;Galactosylceramides:鞘糖脂;Sphingonine kinasa:鞘氨醇激酶;Phosphatase:磷酸酶;Sphingosine-1P:鞘氨醇-1-磷酸;Sphingolipid metabolism:鞘脂代谢;Oxidative stress :氧化应激;Endoplasmic reticulum stress:内质网应激;TNF signaling pathway:TNF信号通路;Equine leucoencephalomalacia :脑白质软化症;Pulmonary edema:肺水肿;Liver injury:肝损伤;Renal injury:肾损伤;Intestinal injury:肠道损伤。T箭头表示抑制作用;红色箭头表示含量上升;蓝色箭头表示含量下降
Fig. 3 Toxicological mechanism and hazards of fumonisinsT arrow indicates an inhibitory effect. Red arrow indicates content increase.;Blue arrow indicates content decreases
国家/组织 Country/Ognization | 产品 Production | imiting amount (μg/kg) 限量 L | 伏马毒素类型 Fumonisins type |
|---|---|---|---|
中国[ China | 玉米及其加工产品、玉米酒糟类产品、玉米青贮饲料和玉米秸秆 | 60 000 | FB1+FB2 |
| 犊牛、羔羊精料补充料 | 20 000 | ||
| 马、兔精料补充料 | 5 000 | ||
| 其他反刍动物精料补充料 | 50 000 | ||
| 猪浓缩饲料 | 5 000 | ||
| 家禽浓缩饲料 | 20 000 | ||
| 猪、兔、马配合饲料 | 5 000 | ||
| 家禽配合饲料 | 20 000 | ||
| 鱼配合饲料 | 10 000 | ||
美国[ America | 马和兔 | 1 000 | FB1+FB2+FB3 |
| 猪和鲶鱼 | 10 000 | ||
| 种用反刍动物,种禽,种用水貂,奶牛和蛋鸡 | 15 000 | ||
| 食用反刍动物(≥3月龄)和毛皮用水貂 | 30 000 | ||
| 食用家禽 | 50 000 | ||
| 其他种类动物和宠物 | 5 000 | ||
欧盟[ European union | 饲料原料:玉米及其产品 | 60 000 | FB1+FB2 |
| 补充饲料和配合饲料 | 5 000 | ||
| 猪马、兔和宠物 | 5 000 | ||
| 鱼 | 10 000 | ||
| 禽、小牛(<4月龄)、小羊 | 20 000 | ||
| 成年反刍动物(>4月龄)、水貂 | 50 000 |
表1 各国伏马毒素在饲料中的限量标准
Table 1 International limiting amount standards of fumonisins in animal feed
国家/组织 Country/Ognization | 产品 Production | imiting amount (μg/kg) 限量 L | 伏马毒素类型 Fumonisins type |
|---|---|---|---|
中国[ China | 玉米及其加工产品、玉米酒糟类产品、玉米青贮饲料和玉米秸秆 | 60 000 | FB1+FB2 |
| 犊牛、羔羊精料补充料 | 20 000 | ||
| 马、兔精料补充料 | 5 000 | ||
| 其他反刍动物精料补充料 | 50 000 | ||
| 猪浓缩饲料 | 5 000 | ||
| 家禽浓缩饲料 | 20 000 | ||
| 猪、兔、马配合饲料 | 5 000 | ||
| 家禽配合饲料 | 20 000 | ||
| 鱼配合饲料 | 10 000 | ||
美国[ America | 马和兔 | 1 000 | FB1+FB2+FB3 |
| 猪和鲶鱼 | 10 000 | ||
| 种用反刍动物,种禽,种用水貂,奶牛和蛋鸡 | 15 000 | ||
| 食用反刍动物(≥3月龄)和毛皮用水貂 | 30 000 | ||
| 食用家禽 | 50 000 | ||
| 其他种类动物和宠物 | 5 000 | ||
欧盟[ European union | 饲料原料:玉米及其产品 | 60 000 | FB1+FB2 |
| 补充饲料和配合饲料 | 5 000 | ||
| 猪马、兔和宠物 | 5 000 | ||
| 鱼 | 10 000 | ||
| 禽、小牛(<4月龄)、小羊 | 20 000 | ||
| 成年反刍动物(>4月龄)、水貂 | 50 000 |
| [34] | Ministry of Agriculture and Rural Affairs. Hygienic Standards for Feeds [S]. 2017-10-14, 2018-05-01. |
| [35] | Center for Veterinary Medicine Human Foods. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds [S]. 2001-11. |
| [36] | The European Commission. ( EC) No 1881/2006 Setting maximum levels for certain contaminants in foodstuffs [S]. 2006-12-19, 2017-03-01. |
| [37] | Aboul-Nasr MB, Obied-Allah MA. Biological and chemical detection of fumonisins produced on agar medium by Fusarium verticillioides isolates collected from corn in Sohag, Egypt [J]. Microbiology, 2013, 159(Pt 8): 1720-1724. |
| [38] | 国家卫生健康委员会. 食品安全国家标准 食品中伏马毒素的测定 [S]. 2016-08-31, 2018-05-01. |
| National Health Commission. National Food Safety Standard Determination of Fumonisins in Foods [S]. 2016-08-31, 2018-05-01. | |
| [39] | Li N, Liu HD, Hu XY, et al. Simultaneous determination of fumonisin B1 and B2 in maize using a facile online pre-column derivatization HPLC method [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2025, 42(4): 517-525. |
| [40] | Nji QN, Mwanza M. Three-year multi-mycotoxin analysis of South African commercial maize from three provinces [J]. Front Fungal Biol, 2024, 5: 1426782. |
| [41] | Gaspardo B, Del Zotto S, Torelli E, et al. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere [J]. Food Chem, 2012, 135(3): 1608-1612. |
| [42] | Chavez RA, Cheng XB, Stasiewicz MJ. A review of the methodology of analyzing aflatoxin and fumonisin in single corn kernels and the potential impacts of these methods on food security [J]. Foods, 2020, 9(3): 297. |
| [43] | Omori AM, Ono EYS, Bordini JG, et al. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene [J]. Food Microbiol, 2018, 73: 160-167. |
| [44] | 邢常瑞, 郑欣, 董雪, 等. 免疫快速同步检测玉米中5种真菌毒素胶体金试纸条的构建和应用 [J]. 中国粮油学报, 2023, 38(11): 205-210. |
| Xing CR, Zheng X, Dong X, et al. Development and application of colloidal gold test strip for simultaneously and fast detection of five mycotoxins in maize [J]. J Chin Cereals Oils Assoc, 2023, 38(11): 205-210. | |
| [45] | ASLPB Gomes, Weber SH, Luciano FB. Resistance of transgenic maize cultivars to mycotoxin production-systematic review and meta-analysis [J]. Toxins, 2024, 16(8): 373. |
| [46] | Barroso VM, Rocha LO, Reis TA, et al. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil [J]. Mycotoxin Res, 2017, 33(2): 121-127. |
| [47] | Blacutt AA, Mitchell TR, Bacon CW, et al. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticilliodes [J]. Mol Plant Microbe Interact, 2016, 29(9): 713-723. |
| [48] | Guo ZQ, Zhang X, Wu JX, et al. In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production [J]. Biol Control, 2020, 143: 104188. |
| [49] | Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming with Bacillus isolates suppresses seed infection and improves the germination of garden peas in the presence of Fusarium strains [J]. J Fungi, 2024, 10(5): 358. |
| [50] | 坚乃丹, 常晓娇, 孙晶, 等. 伏马毒素的危害及防控技术研究进展 [J]. 食品工业科技, 2018, 39(7): 335-339, 347. |
| Jian ND, Chang XJ, Sun J, et al. Research advances on the hazards and control of fumonisins [J]. Sci Technol Food Ind, 2018, 39(7): 335-339, 347. | |
| [51] | Vila-Donat P, Marín S, Sanchis V, et al. Tri-octahedral bentonites as potential technological feed additive for Fusarium mycotoxin reduction [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2020, 37(8): 1374-1387. |
| [52] | Becker-Algeri TA, Heidtmann-Bemvenuti R, dos Santos Hackbart HC, et al. Thermal treatments and their effects on the fumonisin B1 level in rice [J]. Food Control, 2013, 34(2): 488-493. |
| [53] | Wielogorska E, Ahmed Y, Meneely J, et al. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment [J]. Food Chem, 2019, 301: 125281. |
| [54] | Ribeiro DF, Faroni LRDA, Pimentel MAG, et al. Ozone as a fungicidal and detoxifying agent to maize contaminated with fumonisins [J]. Ozone Sci Eng, 2022, 44(1): 38-49. |
| [1] | Gelderblom WC, Jaskiewicz K, Marasas WF, et al. Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme [J]. Appl Environ Microbiol, 1988, 54(7): 1806-1811. |
| [2] | ApSimon JW. Structure, synthesis, and biosynthesis of fumonisin B1 and related compounds [J]. Environ Health Perspect, 2001, 109(): 245-249. |
| [3] | Bryła M, Roszko M, Szymczyk K, et al. Fumonisins in plant-origin food and fodder—a review [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2013, 30(9): 1626-1640. |
| [4] | Chen J, Li ZM, Cheng Y, et al. Sphinganine-analog mycotoxins (SAMs): chemical structures, bioactivities, and genetic controls [J]. J Fungi, 2020, 6(4): 312. |
| [5] | 刘晓萌, 王寿南, 姜德铭, 等. 伏马毒素的污染现状及其生物脱毒研究进展 [J]. 中国畜牧杂志, 2024, 60(2): 143-149. |
| Liu XM, Wang SN, Jiang DM, et al. Current status of contamination and advances in bio-degradation of fumonisins [J]. Chin J Anim Sci, 2024, 60(2): 143-149. | |
| [6] | Qu Z, Ren XF, Du ZL, et al. Fusarium mycotoxins: The major food contaminants [J]. mLife, 2024, 3(2): 176-206. |
| [7] | Janevska S, Ferling I, Jojić K, et al. Self-protection against the sphingolipid biosynthesis inhibitor fumonisin B1 is conferred by a FUM cluster-encoded ceramide synthase [J]. mBio, 2020, 11(3): e00455-20. |
| [8] | Alexander NJ, Proctor RH, McCormick SP. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium [J]. Toxin Rev, 2009, 28(2/3): 198-215. |
| [9] | Slotte JP. Biological functions of sphingomyelins [J]. Prog Lipid Res, 2013, 52(4): 424-437. |
| [10] | Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease [J]. Nat Rev Mol Cell Biol, 2017, 19(3): 175-191. |
| [11] | Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, et al. Oxidative stress in disease and aging: mechanisms and therapies [J]. Oxid Med Cell Longev, 2016, 2016: 8786564. |
| [55] | 高玲玲. 伏马菌素的毒性及去除方法分析 [J]. 化工管理, 2019(29): 175-176. |
| Gao LL. Analysis of toxicity and removal methods of fumonisin [J]. Chem Enterp Manag, 2019(29): 175-176. | |
| [56] | Krishnan SV, Nampoothiri KM, Suresh A, et al. Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria [J]. Front Microbiol, 2024, 14: 1260166. |
| [57] | 王晓, 郑钧予, 彭晓龙, 等. 乳杆菌脱除伏马毒素的研究 [J]. 食品工业科技, 2015, 36(9): 162-165, 170. |
| Wang X, Zheng JY, Peng XL, et al. Study on the removal of fumonisins by Lactobacillus strains [J]. Sci Technol Food Ind, 2015, 36(9): 162-165, 170. | |
| [58] | Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro [J]. J Appl Microbiol, 2006, 101(4): 849-856. |
| [59] | Styriak I, Conková E, Kmec V, et al. The use of yeast for microbial degradation of some selected mycotoxins [J]. Mycotoxin Res, 2001, 17(): 24-27. |
| [60] | Adebo OA, Kayitesi E, Njobeh PB. Reduction of mycotoxins during fermentation of whole grain sorghum to whole grain Ting (a southern African food) [J]. Toxins, 2019, 11(3): 180. |
| [61] | Zhao ZY, Zhang YM, Gong AD, et al. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79 [J]. Appl Microbiol Biotechnol, 2019, 103(17): 7129-7140. |
| [62] | Benedetti R, Nazzi F, Locci R, et al. Degradation of fumonisin B1 by a bacterial strain isolated from soil [J]. Biodegradation, 2006, 17(1): 31-38. |
| [63] | Heinl S, Hartinger D, Thamhesl M, et al. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes [J]. J Biotechnol, 2010, 145(2): 120-129. |
| [64] | Alberts J, Schatzmayr G, Moll WD, et al. Detoxification of the fumonisin mycotoxins in maize: an enzymatic approach [J]. Toxins, 2019, 11(9): 523. |
| [12] | Chen J, Wen J, Tang YT, et al. Research progress on fumonisin B1 contamination and toxicity: a review [J]. Molecules, 2021, 26(17): 5238. |
| [13] | Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology [J]. Annu Rev Pathol, 2015, 10: 173-194. |
| [14] | Li MC, Liu SH, Tan L, et al. Fumonisin B1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion [J]. Food Chem Toxicol, 2022, 166: 113263. |
| [15] | Kim SH, Singh MP, Sharma C, et al. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model [J]. J Biochem Mol Toxicol, 2018: e22161. |
| [16] | Qu LK, Wang L, Ji H, et al. Toxic mechanism and biological detoxification of fumonisins [J]. Toxins, 2022, 14(3): 182. |
| [17] | Gopee NV, He QR, Sharma RP. Fumonisin B1-induced apoptosis is associated with delayed inhibition of protein kinase C, nuclear factor-κB and tumor necrosis factor α in LLC-PK1 cells [J]. Chem Biol Interact, 2003, 146(2): 131-145. |
| [18] | Chen J, Yang SH, Huang S, et al. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway [J]. Food Chem Toxicol, 2020, 139: 111274. |
| [19] | Echenique JVZ, Estima-Silva P, Pereira DB, et al. Leukoencephalomalacia in horses associated with immature corn consumption [J]. Cienc Rural, 2019, 49(3): e20180925. |
| [20] | Javed T, Bunte RM, Dombrink-Kurtzman MA, et al. Comparative pathologic changes in broiler chicks on feed amended with Fusarium proliferatum culture material or purified fumonisin B1 and moniliformin [J]. Mycopathologia, 2005, 159(4): 553-564. |
| [21] | Ali O, Szabó-Fodor J, Fébel H, et al. Porcine hepatic response to fumonisin B1 in a short exposure period: fatty acid profile and clinical investigations [J]. Toxins, 2019, 11(11): 655. |
| [22] | Li JH, Zhu MZ, Xian RX, et al. A preliminary study on the pathology and molecular mechanism of fumonisin B1 nephrotoxicity in young quails [J]. Environ Sci Pollut Res Int, 2023, 30(53): 114438-114451. |
| [23] | Yu S, Jia BX, Liu N, et al. Fumonisin B1 triggers carcinogenesis via the HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells [J]. Sci Total Environ, 2021, 787: 147405. |
| [65] | Garnham CP, Butler SG, Telmer PG, et al. Identification and characterization of an Aspergillus niger amine oxidase that detoxifies intact fumonisins [J]. J Agric Food Chem, 2020, 68(47): 13779-13790. |
| [66] | Wang XL, Qin X, Hao ZZ, et al. Degradation of four major mycotoxins by eight manganese peroxidases in presence of a dicarboxylic acid [J]. Toxins, 2019, 11(10): 566. |
| [24] | Yu S, Jia BX, Liu N, et al. Evaluation of the individual and combined toxicity of fumonisin mycotoxins in human gastric epithelial cells [J]. Int J Mol Sci, 2020, 21(16): 5917. |
| [25] | Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B1-induced toxicity in human kidney cells [J]. Mycotoxin Res, 2023, 39(3): 271-283. |
| [26] | Penagos-Tabares F, Todorov A, Raj J, et al. Multi-mycotoxin contamination in Serbian maize during 2021-2023: climatic influences and implications for food and feed safety [J]. Toxins, 2025, 17(5): 227. |
| [27] | Akello J, Ortega-Beltran A, Katati B, et al. Prevalence of aflatoxin- and fumonisin-producing fungi associated with cereal crops grown in Zimbabwe and their associated risks in a climate change scenario [J]. Foods, 2021, 10(2): 287. |
| [28] | Bulgaru VC, Gras MA, Popa A, et al. Trends in mycotoxins co-occurrence in the complete feed for farm animals in southern Romania during 2021-2024 period [J]. Toxins, 2025, 17(4): 201. |
| [29] | Mahdjoubi CK, Arroyo-Manzanares N, Hamini-Kadar N, et al. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria [J]. Toxins, 2020, 12(3): 194. |
| [30] | 杨晓冬, 赵凤, 罗靖, 等. 2022年四川省三地区谷物及制品真菌污染现状调查 [J]. 预防医学情报杂志, 2023, 39(7): 830-834. |
| Yang XD, Zhao F, Luo J, et al. Investigation on the fungal contamination of cereals and products in three regions of Sichuan province in 2022 [J]. J Prev Med Inf, 2023, 39(7): 830-834. | |
| [31] | 张弘弢, 姜雪洁, 李睿, 等. 黑龙江省10个奶牛场饲料中霉菌毒素暴露情况的调查 [J]. 黑龙江畜牧兽医, 2022(8): 101-108, 136. |
| Zhang HT, Jiang XJ, Li R, et al. Investigation on mycotoxin exposure in feeds of 10 dairy farms in Heilongjiang province [J]. Heilongjiang Anim Sci Vet Med, 2022(8): 101-108, 136. | |
| [32] | 程玲云, 傅骏青, 杨振东, 等. 玉米制品中伏马菌素污染情况调查研究 [J]. 食品安全导刊,2024, (26): 93-95, 99. |
| Cheng LY, Fu JQ, Yang ZD, et al. Investigation of fumonisin contamination in corn products [J]. China Food Saf Mag, 2024, (26): 93-95, 99. | |
| [33] | 赫丹, 徐剑宏, 仇剑波, 等. 伏马毒素的理化性质、检测方法及在我国玉米和玉米制品中的污染现状综述 [J]. 江苏农业科学, 2021, 49(21): 33-39. |
| He D, Xu JH, Qiu JB, et al. Physical and chemical properties, detection methods and pollution status of fumonisins in corn and its products in China: a review [J]. Jiangsu Agric Sci, 2021, 49(21): 33-39. | |
| [34] | 农业农村部. 饲料卫生标准 [S]. 2017-10-14, 2018-05-01. |
| [1] | 侯智涵, 郝楠, 李佳琪, 赵斌, 刘颖超. RNA m1A和m5C甲基化修饰在拟轮枝镰孢伏马毒素生物合成中的作用[J]. 生物技术通报, 2024, 40(9): 282-290. |
| [2] | 张美玉, 赵玉斌, 王灵云, 宋元达, 赵新河, 任晓洁. 微藻破囊壶菌产功能性脂肪酸DHA研究进展[J]. 生物技术通报, 2024, 40(6): 81-94. |
| [3] | 李亮, 徐姗姗, 姜艳军. 生物合成法生产麦角硫因的研究进展[J]. 生物技术通报, 2024, 40(1): 86-99. |
| [4] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
| [5] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
| [6] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
| [7] | 汪金秀, 张琪, 丁伟, 陈拓. 核糖体肽生物合成中的典型翻译后修饰研究[J]. 生物技术通报, 2020, 36(10): 215-225. |
| [8] | 严武平, 吴友根, 于靖, 杨东梅, 张军锋. 药用植物microRNA研究现状与展望[J]. 生物技术通报, 2019, 35(8): 178-185. |
| [9] | 张礼, 孙堆, 王晓, 郑春丽. 半胱氨酸参与生物体重金属抗性的研究进展[J]. 生物技术通报, 2017, 33(5): 26-33. |
| [10] | 汪华;崔志峰;. 莽草酸生物合成途径的调控[J]. , 2009, 0(03): 50-53. |
| [11] | 马靓;丁鹏;杨广笑;何光源;. 植物类萜生物合成途径及关键酶的研究进展[J]. , 2006, 0(S1): 22-30. |
| [12] | O.J.M.Goddijn. 植物代谢工程生物反应器[J]. , 1996, 0(05): 5-10. |
| [13] | . 抗生素和干扰素[J]. , 1996, 0(05): 64-66. |
| [14] | . 食品上的应用[J]. , 1995, 0(04): 98-107. |
| [15] | . 抗生素和干扰素[J]. , 1993, 0(08): 35-35. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||