生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 32-42.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0506

• 作物高光效专题 • 上一篇    下一篇

PPR蛋白调控叶绿体RNA编辑分子机制研究进展

李新颖1(), 孙晶2(), 吕若彤1, 任亚娟1, 罗蕾1, 艾鹏飞1(), 王雁伟1()   

  1. 1.河北科技大学食品与生物学院,石家庄 050018
    2.中国农业科学院生物技术研究所,北京 100081
  • 收稿日期:2025-05-16 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 艾鹏飞,博士,教授,研究方向 :作物遗传育种;E-mail: apf2002@sina.com
    王雁伟,男,博士,讲师,研究方向 :植物分子生物学与作物遗传育种;E-mail: wangyanwei01@caas.cn
  • 作者简介:李新颖,硕士研究生,研究方向 :植物分子生物学与作物遗传育种;E-mail: 2624508507@qq.com
    李新颖,硕士研究生,研究方向 :植物分子生物学与作物遗传育种;E-mail: 2624508507@qq.com
  • 基金资助:
    河北省高等学校科学研究项目(BJK2024165);河北科技大学引进人才科研启动基金(QD2023010)

Research Progress in the Molecular Mechanism of PPR Protein-regulated Chloroplast RNA Editing

LI Xin-ying1(), SUN Jing2(), LYU Ruo-tong1, REN Ya-juan1, LUO Lei1, AI Peng-fei1(), WANG Yan-wei1()   

  1. 1.College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018
    2.Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2025-05-16 Published:2025-10-26 Online:2025-10-28

摘要:

作为半自主性细胞器,叶绿体自身含有基因组,其转录的部分RNA需要通过实行C→U碱基变化才能保证基因的正确表达。PPR(pentatricopeptide repeat protein)蛋白是控制叶绿体RNA编辑的核心调控因子,其家族庞大,分为P型和PLS型两个亚家族,根据它们不同的C端结构域,PLS类亚家族蛋白可以进一步分为PLS-E、PLS-E+和PLS-DYW,其中,PLS-DYW型中的DYW结构域具有脱氨酶活性能直接参与RNA编辑。PPR蛋白特有的PPR基序以N端到C端的取向第6和第1位的氨基酸组合能识别编辑位点上游5′-3′方向的RNA序列,这种模块化的识别机制使得PPR蛋白能够以单PPR基序对应单核苷酸的方式筛选编辑位点,并募集和组装编辑复合体,实施编辑过程。相关PPR蛋白调控的基因发生编辑缺陷会导致叶绿体发育异常,引发植株萎蔫或致死。本文对现阶段相关研究进展进行综述,重点介绍了不同植物中PPR蛋白是如何调控叶绿体基因进行RNA编辑的分子机制,并对RNA编辑复合体动态组装过程进行了展望,为未来深入探索PPR蛋白的靶向机制及其在农业中的应用提供借鉴。

关键词: 叶绿体, PPR蛋白, RNA编辑, 光合作用

Abstract:

As semi-autonomous organelles, chloroplasts possess their own genomes, and some of their transcribed RNAs require C-to-U base changes to ensure correct gene expression. PPR (pentatricopeptide repeat protein) proteins are the core regulatory factors controlling chloroplast RNA editing. This family is large and is divided into two subfamilies, P-type and PLS-type, based on their different C-terminal domains. The PLS-type subfamily can be further classified into PLS-E, PLS-E+, and PLS-DYW. Among them, the DYW domain in the PLS-DYW type has deaminase activity and directly participates in RNA editing. The PPR motif, which is unique to PPR proteins, recognizes the RNA sequence upstream of the editing site in the 5′-3′ direction based on the combination of the 6th and 1st amino acids from the N-terminal to the C-terminal. This modular recognition mechanism enables PPR proteins to screen editing sites in a one-PPR-motif-to-one-nucleotide manner, recruit and assemble the editing complex, and carry out the editing process. Defects in RNA editing regulated by related PPR proteins can lead to abnormal chloroplast development, causing plant wilting or death. This article reviews the current research progress, focusing on the molecular mechanisms by which PPR proteins regulate RNA editing of chloroplast genes in different plants, and prospects to the dynamic assembly process of the RNA editing complex, providing references for future in-depth exploration of the targeting mechanism of PPR proteins and their applications in agriculture.

Key words: chloroplast, PPR proteins, RNA editing, photosynthesis