生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 64-71.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0549

• 作物高光效专题 • 上一篇    下一篇

植物光合作用的光保护机制研究进展

陈立超(), 杨雪莲, 李文杰, 石艳云, 张立新, 徐秀美()   

  1. 省部共建作物逆境适应与改良国家重点实验室 河南省合成生物与生物制造重点实验室 河南大学生命科学学院,开封 475000
  • 收稿日期:2025-05-30 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 徐秀美,博士,教授,研究方向 :光合作用功能调控机理;E-mail: xuxiumei@vip.henu.edu.cn
  • 作者简介:陈立超,博士,副教授,研究方向 :蛋白氧化还原修饰与光合作用调控;E-mail: lcchen@henu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF1001700)

Advances in the Study of Photoprotection in Plant Photosynthesis

CHEN Li-chao(), YANG Xue-lian, LI Wen-jie, SHI Yan-yun, ZHANG Li-xin, XU Xiu-mei()   

  1. State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Province and Ministry of Science and Technology, Key Laboratory of Synthetic Biology and Biomanufacturing of Henan Province, School of Life Sciences, Henan University, Kaifeng 475000
  • Received:2025-05-30 Published:2025-10-26 Online:2025-10-28

摘要:

光合作用是植物生长和产量形成的基础。光为植物光合作用提供能源,但是过高的光强会产生光抑制,导致光合效率降低甚至光氧化破坏,尤其在干旱、高温、低温等逆境条件下更为严重。为应对光抑制,植物进化出多种光保护机制,包括叶绿体的移动、非光化学淬灭、活性氧清除、环式电子传递及PSII损伤修复等。其中,叶绿体的移动通过叶片姿态调整和叶绿体位置改变来影响光能的吸收,从而实现对强光的适应;非光化学淬灭通过将过剩光能以热形式耗散避免PSII损伤;活性氧清除机制可以减轻氧化损伤;环式电子传递通过调节能量平衡和光系统间的激发能分配,在光合作用的光保护中发挥关键作用;PSII损伤修复机制的高效运行使植物能在逆境中维持光合效率。最新研究加深了对光保护机制的理解,为培育高光效作物品种提供了新思路和靶点。未来需加强田间试验,探究光保护机制在自然环境中的作用,深入解析光保护机制的分子基础和调控网络,有望为培育高产、优质、抗逆的作物新品种提供理论依据与数据支撑。

关键词: 光合作用, 光损伤, 光抑制, 光保护

Abstract:

Photosynthesis is the foundation of plant growth and yield formation. Light provides the energy for plant photosynthesis, but excessive light can cause photoinhibition, leading to reduced photosynthetic efficiency or even photo-oxidative damage, which is particularly severe under stress conditions such as drought, high temperature, and low temperature. In response to photoinhibition, plants have evolved a variety of photoprotective mechanisms, including chloroplast movement, non-photochemical quenching, reactive oxygen species scavenging, cyclic electron transport, and PSII damage repair. The movement of chloroplasts affects the absorption of light energy through the adjustment of leaf posture and the change of chloroplast position, so as to achieve the adaptation to high light. Non-photochemical quenching dissipates excess light energy as heat to prevent PSII damage. The ROS scavenging system mitigates oxidative damage. Cyclic electron flow regulates energy balance and excitation energy distribution between photosystems, playing a key role in photoprotection. The efficient PSII repair mechanism helps plants maintain photosynthetic efficiency under stress. Recent research has enhanced our understanding of these mechanisms, providing new ideas for breeding high-photosynthetic-efficiency crop varieties. Future research should focus on field experiments to explore the role of photoprotection in natural conditions and the molecular basis and regulatory networks of photoprotective mechanisms, which is expected to provide theoretical basis and data support for cultivating new crop varieties with high yield, high quality and stress resistance.

Key words: photosynthesis, photodamage, photoinhibition, photoprotection