生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 64-71.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0549
陈立超(
), 杨雪莲, 李文杰, 石艳云, 张立新, 徐秀美(
)
收稿日期:2025-05-30
出版日期:2025-10-26
发布日期:2025-10-28
通讯作者:
徐秀美,博士,教授,研究方向 :光合作用功能调控机理;E-mail: xuxiumei@vip.henu.edu.cn作者简介:陈立超,博士,副教授,研究方向 :蛋白氧化还原修饰与光合作用调控;E-mail: lcchen@henu.edu.cn
基金资助:
CHEN Li-chao(
), YANG Xue-lian, LI Wen-jie, SHI Yan-yun, ZHANG Li-xin, XU Xiu-mei(
)
Received:2025-05-30
Published:2025-10-26
Online:2025-10-28
摘要:
光合作用是植物生长和产量形成的基础。光为植物光合作用提供能源,但是过高的光强会产生光抑制,导致光合效率降低甚至光氧化破坏,尤其在干旱、高温、低温等逆境条件下更为严重。为应对光抑制,植物进化出多种光保护机制,包括叶绿体的移动、非光化学淬灭、活性氧清除、环式电子传递及PSII损伤修复等。其中,叶绿体的移动通过叶片姿态调整和叶绿体位置改变来影响光能的吸收,从而实现对强光的适应;非光化学淬灭通过将过剩光能以热形式耗散避免PSII损伤;活性氧清除机制可以减轻氧化损伤;环式电子传递通过调节能量平衡和光系统间的激发能分配,在光合作用的光保护中发挥关键作用;PSII损伤修复机制的高效运行使植物能在逆境中维持光合效率。最新研究加深了对光保护机制的理解,为培育高光效作物品种提供了新思路和靶点。未来需加强田间试验,探究光保护机制在自然环境中的作用,深入解析光保护机制的分子基础和调控网络,有望为培育高产、优质、抗逆的作物新品种提供理论依据与数据支撑。
陈立超, 杨雪莲, 李文杰, 石艳云, 张立新, 徐秀美. 植物光合作用的光保护机制研究进展[J]. 生物技术通报, 2025, 41(10): 64-71.
CHEN Li-chao, YANG Xue-lian, LI Wen-jie, SHI Yan-yun, ZHANG Li-xin, XU Xiu-mei. Advances in the Study of Photoprotection in Plant Photosynthesis[J]. Biotechnology Bulletin, 2025, 41(10): 64-71.
图1 植物主要的光保护机制强光照射下,叶绿体的移动、非光化学淬灭、活性氧清除、环式电子传递、光合状态转换、PSII损伤修复等光保护机制协同发挥作用,进而保护植物免受强光损害
Fig. 1 Main light protection mechanisms of plantsUnder high light irradiation, photoprotection mechanisms such as chloroplast movement, non-photochemical quenching, reactive oxygen species scavenging, cyclic electron transfer, photosynthetic state transition, and PSII damage repair work together to protect plants from high light damage
图2 叶绿体内主要活性氧的产生与清除途径A:叶绿体内主要活性氧种类,主要包括单线态氧(1O2)、超氧阴离子(O2-·)、过氧化氢(H2O2)和羟基自由基(·OH);B:叶绿体内主要抗氧化系统,酶促抗氧化系统主要包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽过氧化物酶(GPX)等,SOD能够催化O2-·歧化为H2O2,H2O2在Fe2+存在下生成·OH,或由APX、GPX分解为H2O和其他物质。非酶抗氧化系统包括抗坏血酸(VC)、还原型谷胱甘肽(GSH)、α-生育酚(VE)等,能够通过自身的氧化还原反应,直接清除ROS,减轻氧化损伤
Fig. 2 Production and scavenge ways of reactive oxygen species in chloroplastsA: Types of reactive oxygen species in chloroplasts, including singlet oxygen (1O2), superoxide (O2-·), hydrogen peroxide (H2O2) and hydroxyl radical (·OH). B: The main antioxidant system in chloroplasts, the enzymatic antioxidant system mainly includes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). SOD can catalyze the dismutation of O2-· to H2O2, and then H₂O₂ produces ·OH in the presence of Fe²⁺, or is decomposed into H2O and other substances by APX and GPX. The non-enzymatic antioxidant system includes ascorbic acid (VC), reduced glutathione (GSH), α-tocopherol (VE), etc., which can directly remove ROS and reduce oxidative damage through its own redox reaction
| [1] | Fischer WW, Hemp J, Johnson JE. Evolution of oxygenic photosynthesis [J]. Annu Rev Earth Planet Sci, 2016, 44: 647-683. |
| [2] | Kaiserli E, Páldi K, O'Donnell L, et al. Integration of light and photoperiodic signaling in transcriptional nuclear foci [J]. Dev Cell, 2015, 35(3): 311-321. |
| [3] | Zavafer A, Mancilla C. Concepts of photochemical damage of Photosystem II and the role of excessive excitation [J]. J Photochem Photobiol C Photochem Rev, 2021, 47: 100421. |
| [4] | Krieger-Liszkay A, Spetea C, Messinger J. Photosynthesis—European congress on photosynthesis research [J]. Physiol Plant, 2019, 166(1): 4-6. |
| [5] | Wang Q, Yang S, Wan SB, et al. The significance of calcium in photosynthesis [J]. Int J Mol Sci, 2019, 20(6): 1353. |
| [6] | Tikkanen M, Aro EM. Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants [J]. Biochim Biophys Acta Bioenerg, 2012, 1817(1): 232-238. |
| [7] | Bassi R, Dall'Osto L. Dissipation of light energy absorbed in excess: the molecular mechanisms [J]. Annu Rev Plant Biol, 2021, 72: 47-76. |
| [8] | Kirschner GK. Chloroplast photoprotection: face the light or Run and hide? [J]. Plant J, 2023, 115(1): 5-6. |
| [9] | Keren N, Krieger-Liszkay A. Photoinhibition: molecular mechanisms and physiological significance [J]. Physiol Plant, 2011, 142(1): 1-5. |
| [10] | Hetherington SE, He J, Smillie RM. Photoinhibition at low temperature in chilling-sensitive and-resistant plants [J]. Plant Physiol, 1989, 90(4): 1609-1615. |
| [11] | Powles SB. Photoinhibition of photosynthesis induced by visible light [J]. Annu Rev Plant Physiol, 1984, 35: 15-44. |
| [12] | Leakey ADB, Uribelarrea M, Ainsworth EA, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought [J]. Plant Physiol, 2006, 140(2): 779-790. |
| [13] | Müller P, Li X-P, Niyogi KK. Non-photochemical quenching. a response to excess light energy [J]. Plant Physiol, 2001, 125(4): 1558-1566. |
| [14] | Aro EM, Virgin I, Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover [J]. Biochim Biophys Acta Bioenerg, 1993, 1143(2): 113-134. |
| [15] | Reisman S, Ohad I. Light-dependent degradation of the thylakoid 32 kDa QB protein in isolated chloroplast membranes of Chlamydomonas reinhardtii [J]. Biochim Biophys Acta Bioenerg, 1986, 849(1): 51-61. |
| [16] | Davis PA, Hangarter RP. Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves [J]. Photosynth Res, 2012, 112(3): 153-161. |
| [17] | Wada M. Chloroplast movement [J]. Plant Sci, 2013, 210: 177-182. |
| [18] | Han IS, Cho HY, Moni A, et al. Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis [J]. Plant Cell Physiol, 2013, 54(1): 48-56. |
| [19] | Majumdar A, Kar RK. Chloroplast avoidance movement: a novel paradigm of ROS signalling [J]. Photosynth Res, 2020, 144(1): 109-121. |
| [20] | Wilson S, Ruban AV. Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection [J]. Plant Physiol, 2020, 183(3): 1213-1223. |
| [21] | Griffin JHC, Prado K, Sutton P, et al. Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes [J]. Physiol Plant, 2020, 169(4): 515-528. |
| [22] | Li FW, Melkonian M, Rothfels CJ, et al. Phytochrome diversity in green plants and the origin of canonical plant phytochromes [J]. Nat Commun, 2015, 6: 7852. |
| [23] | Viczián A, Klose C, Hiltbrunner A, et al. Editorial: plant phytochromes: from structure to signaling and beyond [J]. Front Plant Sci, 2021, 12: 811379. |
| [24] | Waksman T, Suetsugu N, Hermanowicz P, et al. Phototropin phosphorylation of ROOT PHOTOTROPISM 2 and its role in mediating phototropism, leaf positioning, and chloroplast accumulation movement in Arabidopsis [J]. Plant J, 2023, 114(2): 390-402. |
| [25] | Kong SG, Yamazaki Y, Shimada A, et al. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement [J]. Plant Cell, 2024, 36(4): 1159-1181. |
| [26] | Usami H, Maeda T, Fujii Y, et al. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens [J]. Planta, 2012, 236(6): 1889-1897. |
| [27] | Yuan N, Mendu L, Ghose K, et al. FKF1 interacts with CHUP1 and regulates chloroplast movement in Arabidopsis [J]. Plants, 2023, 12(3): 542. |
| [28] | Yamamoto-Negi Y, Higa T, Komatsu A, et al. A kinesin-like protein, KAC, is required for light-induced and actin-based chloroplast movement in Marchantia polymorpha [J]. Plant Cell Physiol, 2024, 65(11): 1787-1800. |
| [29] | Fernández-Marín B, Roach T, Verhoeven A, et al. Shedding light on the dark side of xanthophyll cycles [J]. New Phytol, 2021, 230(4): 1336-1344. |
| [30] | Zuo GQ. Non-photochemical quenching (NPQ) in photoprotection: insights into NPQ levels required to avoid photoinactivation and photoinhibition [J]. New Phytol, 2025, 246(5): 1967-1974. |
| [31] | De Souza AP, Burgess SJ, Doran L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection [J]. Science, 2022, 377(6608): 851-854. |
| [32] | Kromdijk J, Głowacka K, Leonelli L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection [J]. Science, 2016, 354(6314): 857-861. |
| [33] | Yu GM, Hao JF, Pan XW, et al. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH [J]. Nat Plants, 2022, 8(7): 840-855. |
| [34] | Duan SJ, Dong BB, Chen ZQ, et al. HHL1 and SOQ1 synergistically regulate nonphotochemical quenching in Arabidopsis [J]. J Biol Chem, 2023, 299(5): 104670. |
| [35] | Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol, 2004, 55: 373-399. |
| [36] | D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis [J]. Nat Rev Mol Cell Biol, 2007, 8(10): 813-824. |
| [37] | Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses [J]. Plant Cell, 2005, 17(7): 1866-1875. |
| [38] | Mittler R. ROS are good [J]. Trends Plant Sci, 2017, 22(1): 11-19. |
| [39] | Biswas MS, Mano J. Lipid peroxide-derived reactive carbonyl species as mediators of oxidative stress and signaling [J]. Front Plant Sci, 2021, 12: 720867. |
| [40] | Sachdev S, Ansari SA, Ansari MI, et al. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms [J]. Antioxidants, 2021, 10(2): 277. |
| [41] | Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator [J]. Antioxidants, 2020, 9(8): 681. |
| [42] | Xiao MG, Li ZX, Zhu L, et al. The multiple roles of ascorbate in the abiotic stress response of plants: antioxidant, cofactor, and regulator [J]. Front Plant Sci, 2021, 12: 598173. |
| [43] | Ji DL, Luo MF, Guo YJ, et al. Efficient scavenging of reactive carbonyl species in chloroplasts is required for light acclimation and fitness of plants [J]. New Phytol, 2023, 240(2): 676-693. |
| [44] | Niu YX, Lazár D, Holzwarth AR, et al. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport [J]. New Phytol, 2023, 239(5): 1869-1886. |
| [45] | Shikanai T. Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis [J]. Curr Opin Biotechnol, 2014, 26: 25-30. |
| [46] | DalCorso G, Pesaresi P, Masiero S, et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis [J]. Cell, 2008, 132(2): 273-285. |
| [47] | Hertle AP, Blunder T, Wunder T, et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow [J]. Mol Cell, 2013, 49(3): 511-523. |
| [48] | Munekage Y, Hojo M, Meurer J, et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis [J]. Cell, 2002, 110(3): 361-371. |
| [49] | Sugimoto K, Okegawa Y, Tohri A, et al. A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI [J]. Plant Cell Physiol, 2013, 54(9): 1525-1534. |
| [50] | Kouřil R, Strouhal O, Nosek L, et al. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase super complex [J]. Plant J, 2014, 77(4): 568-576. |
| [51] | Laughlin TG, Savage DF, Davies KM. Recent advances on the structure and function of NDH-1: the complex I of oxygenic photosynthesis [J]. Biochim Biophys Acta Bioenerg, 2020, 1861(11): 148254. |
| [52] | Strand DD, Fisher N, Kramer DM. The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow [J]. J Biol Chem, 2017, 292(28): 11850-11860. |
| [53] | Pan XW, Cao DF, Xie F, et al. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase [J]. Nat Commun, 2020, 11(1): 610. |
| [54] | Shen LL, Tang KL, Wang WD, et al. Architecture of the chloroplast PSI-NDH super complex in Hordeum vulgare [J]. Nature, 2022, 601(7894): 649-654. |
| [55] | Bellafiore S, Barneche F, Peltier G, et al. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 [J]. Nature, 2005, 433(7028): 892-895. |
| [56] | Wu JH, Rong LW, Lin WJ, et al. Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7 [J]. Plant Physiol, 2021, 186(2): 964-976. |
| [57] | Pan XW, Ma J, Su XD, et al. Structure of the maize photosystem I super complex with light-harvesting complexes I and II [J]. Science, 2018, 360(6393): 1109-1113. |
| [58] | Huang ZH, Shen LL, Wang WD, et al. Structure of photosystem I-LHCI-LHCII from the green Alga Chlamydomonas reinhardtii in State 2 [J]. Nat Commun, 2021, 12(1): 1100. |
| [59] | Wu JH, Chen S, Wang C, et al. Regulatory dynamics of the higher-plant PSI-LHCI super complex during state transitions [J]. Mol Plant, 2023, 16(12): 1937-1950. |
| [60] | Gururani MA, Venkatesh J, Tran LSP. Regulation of photosynthesis during abiotic stress-induced photoinhibition [J]. Mol Plant, 2015, 8(9): 1304-1320.60 |
| [61] | Su JL, Jiao QS, Jia T, et al. The photosystem-II repair cycle: updates and open questions [J]. Planta, 2023, 259(1): 20. |
| [62] | Theis J, Schroda M. Revisiting the photosystem II repair cycle [J]. Plant Signal Behav, 2016, 11(9): e1218587. |
| [63] | Kato Y, Sun XW, Zhang LX, et al. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis [J]. Plant Physiol, 2012, 159(4): 1428-1439. |
| [64] | Sun XW, Peng LW, Guo JK, et al. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis [J]. Plant Cell, 2007, 19(4): 1347-1361. |
| [65] | Zoschke R, Bock R. Chloroplast translation: structural and functional organization, operational control, and regulation [J]. Plant Cell, 2018, 30(4): 745-770. |
| [66] | Williams-Carrier R, Chotewutmontri P, Perkel S, et al. The psbA open reading frame acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants [J]. Plant Cell, 2025, 37(4): koaf047. |
| [67] | Chen JH, Chen ST, He NY, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield [J]. Nat Plants, 2020, 6(5): 570-580. |
| [1] | 程雪, 付颖, 柴晓娇, 王红艳, 邓欣. 谷子LHC基因家族鉴定及非生物胁迫表达分析[J]. 生物技术通报, 2025, 41(8): 102-114. |
| [2] | 王斌, 王玉昆, 肖艳辉. 丁香罗勒(Ocimum gratissimum)叶片响应镉胁迫的比较转录组学分析[J]. 生物技术通报, 2025, 41(3): 255-270. |
| [3] | 范艳飞, 叶露幻, 李雨桐, 王钏跞, 张瑞, 罗建华, 王鹏. 第二十七届中国科协年会学术论文运用小麦杂交株系挖掘环式光合电子传递调控基因并应用于作物高光效改造[J]. 生物技术通报, 2025, 41(10): 72-86. |
| [4] | 李新颖, 孙晶, 吕若彤, 任亚娟, 罗蕾, 艾鹏飞, 王雁伟. PPR蛋白调控叶绿体RNA编辑分子机制研究进展[J]. 生物技术通报, 2025, 41(10): 32-42. |
| [5] | 李波娣, 李志超, 朱国辉, 彭新湘, 张智胜. 第二十七届中国科协年会学术论文叶绿体中过表达乙醇酸氧化酶对水稻光合作用与生长的影响[J]. 生物技术通报, 2025, 41(10): 87-97. |
| [6] | 高博闻, 丁顺华, 陈小军, 温晓刚, 田利金, 卢庆陶. 优化光合作用提高农业生产效率的策略[J]. 生物技术通报, 2025, 41(10): 54-63. |
| [7] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
| [8] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
| [9] | 程爽, ULAANDUU Namuun, 李卓琳, 胡海玲, 邓晓霞, 李月明, 王竞红, 蔺吉祥. 植物光系统 II(PSII)应答非生物胁迫机理研究进展[J]. 生物技术通报, 2023, 39(12): 33-42. |
| [10] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
| [11] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
| [12] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
| [13] | 殷国良, 孙文浩, 庞效云, 孙飞. 冷冻电镜技术在分子植物学研究中的应用[J]. 生物技术通报, 2022, 38(1): 15-32. |
| [14] | 马旭辉, 陈茹梅, 柳小庆, 赵军, 张霞. 褪黑素对玉米幼苗根系发育和抗旱性的影响[J]. 生物技术通报, 2021, 37(2): 1-14. |
| [15] | 孟丽娜, 彭春莹, 李铁栋, 李博生. 基于蛋白质组学对螺旋藻砷胁迫响应机制的研究[J]. 生物技术通报, 2020, 36(4): 107-116. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||