生物技术通报 ›› 2025, Vol. 41 ›› Issue (10): 54-63.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0551

• 作物高光效专题 • 上一篇    下一篇

优化光合作用提高农业生产效率的策略

高博闻1,2(), 丁顺华1,2, 陈小军1,2, 温晓刚1,2, 田利金1,2,3, 卢庆陶1,2,3()   

  1. 1.饲草种质高效设计与利用全国重点实验室 中国科学院植物研究所光生物学重点实验室,北京 100093
    2.国家植物园,北京 100093
    3.黄河三角洲农业高新技术产业示范区院士工作站 国家盐碱地综合利用技术创新中心,东营 257300
  • 收稿日期:2025-05-30 出版日期:2025-10-26 发布日期:2025-10-28
  • 通讯作者: 卢庆陶,男,博士,副研究员,研究方向 :光合作用环境适应调控机制;E-mail: lu_qingtao@ibcas.ac.cn
  • 作者简介:高博闻,男,硕士研究生,研究方向 :光合作用环境适应分子机理;E-mail: dfsybob@126.com
  • 基金资助:
    国家重点研发计划项目(2022YFF1001701);国家重点研发计划项目(2020YFA0907602);中国科学院前瞻战略科技先导专项(XDA26030201)

Strategies for Optimizing Photosynthesis to Enhance Agricultural Production Efficiency

GAO Bo-wen1,2(), DING Shun-hua1,2, CHEN Xiao-jun1,2, WEN Xiao-gang1,2, TIAN Li-jin1,2,3, LU Qing-tao1,2,3()   

  1. 1.State Key Laboratory of Forage Breeding-by-Design and Utilization, Key lab of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2.China National Botanical Garden, Beijing 100093
    3.Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300
  • Received:2025-05-30 Published:2025-10-26 Online:2025-10-28

摘要:

光合作用是地球上最重要的生物化学反应,是植物将光能转化为化学能的关键过程,也是作物产量形成的基础。在全球人口持续增长、耕地面积有限、气候变化加剧的背景下,提高光合作用的效率对于提高农业生产效率具有十分重要的意义。近年来,随着分子生物学、生物化学和合成生物学等学科的快速发展,科研人员在提高光合效率方面取得了显著进展,发现了多种有效的策略和方法。首先,通过调控环境因子来提高光合效率是最直接且有效的方法之一,如适度增加二氧化碳(CO2)浓度和优化光照强度等;其次,可以利用分子遗传学等手段培育高光效作物,如可以通过改造Rubisco酶提高植物对CO2的亲和力来提升植物的农业生产效率;近年来也有研究发现,通过提高植物体内质体醌、质体蓝素等电子载体的含量可以优化电子传递效率,从而增强光合作用并提高植物对外界胁迫的响应能力;此外,还可以通过合成生物学手段改造光合途径和结构来优化植物的光合作用过程从而实现农业生产效率的提高,目前这一方向的热点技术是将C4途径通过基因重组等手段导入C3植物中。因此,本文综述了通过提高植物光合效率促进农业生产效率的多种策略。总的来说,提高农业生产效率需要多学科交叉融合,通过不断探索和创新,有望在未来实现光合效率的突破性提升,为全球粮食安全提供有力保障。

关键词: 光合作用, 农业生产效率, 质体醌, 高光效, CO2浓度, 高光效作物, 合成生物学, 电子传递效率

Abstract:

Photosynthesis, as the most fundamental biochemical process on Earth, serves as the primary mechanism for converting solar energy into chemical energy in plants and constitutes the physiological basis for crop yield formation. In the context of global population expansion, limited arable land resources, and increasingly severe climate change, enhancing photosynthetic efficiency has become a crucial strategy for improving agricultural productivity. Recent advancements in molecular biology, biochemistry, and synthetic biology have facilitated significant progress in photosynthetic efficiency optimization, leading to the development of diverse and effective enhancement strategies. Current research has identified multiple approaches to improve photosynthetic efficiency through various mechanisms. Primarily, environmental factor regulation represents one of the most direct and effective methods, including moderate elevation of atmospheric CO2 concentration and optimization of light intensity parameters. Secondly, molecular genetic techniques have been employed to develop high-efficiency crop varieties, particularly through the modification of Rubisco to enhance its CO2 affinity, thereby increasing agricultural productivity. Recent studies have demonstrated that elevating the content of electron carriers such as plastoquinone and plastocyanin can optimize electron transport efficiency, subsequently enhance photosynthetic capacity, and improve plant stress tolerance. Furthermore, synthetic biology approaches have been utilized to reconstruct photosynthetic pathways and structures, enabling the optimization of photosynthetic processes for higher agricultural productivity. Notably, the introduction of C4 photosynthetic pathway into C3 plants through genetic recombination has emerged as a current research focus in this field. This review systematically examines various strategies for enhancing agricultural productivity through photosynthetic efficiency improvement, while providing a comprehensive perspective on future research directions. It is evident that achieving significant improvements in agricultural productivity requires interdisciplinary integration and collaborative efforts. Through continuous exploration and technological innovation, we anticipate breakthroughs in photosynthetic efficiency optimization, which will provide substantial support for addressing global food security challenges. The integration of advanced biotechnological approaches with traditional agricultural practices holds great promise for developing sustainable solutions to meet the increasing global food demand.

Key words: photosynthesis, agricultural production efficiency, plastoquinone, high light efficiency, CO2 concentration, high photosynthetic-efficiency crops, synthetic biology, electron transport efficiency