生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 301-310.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0366

• 研究报告 • 上一篇    

蒺藜苜蓿开花过程中的全基因组DNA甲基化分析

蒋天威1(), 李亚娇2, 马培杰2, 陈才俊2, 刘晓霞2, 陈莹2(), 王小利2()   

  1. 1.贵州大学动物科学学院,贵阳 550006
    2.贵州省农业科学院草业研究所,贵阳 550006
  • 收稿日期:2025-04-07 出版日期:2025-11-26 发布日期:2025-12-09
  • 通讯作者: 王小利,男,研究员,研究方向 :分子植物学;E-mail: WangXiaoli_GIP@163.com
    陈莹,女,副研究员,研究方向 :分子植物育种;E-mail: 379145306@qq.com
  • 作者简介:蒋天威,男,硕士研究生,研究方向 :分子植物育种;E-mail: JiangTianwei_GIP@163.com
  • 基金资助:
    贵州省基金项目(黔科合基础-ZK[2023]一般164),科研机构创新能力建设专项资金(黔科合服企[2022]004);贵州省基金项目(黔科合基础-ZK[2024]一般533),贵州省农科院青年基金(黔农科青年基金[2023]19)

Whole-genome DNA Methylation Analysis during the Flowering Processof Medicago truncatula

JIANG Tian-wei1(), LI Ya-jiao2, MA Pei-jie2, CHEN Cai-jun2, LIU Xiao-xia2, CHEN Ying2(), WANG Xiao-li2()   

  1. 1.Animal Science College of Guizhou University, Guiyang 550006
    2.Grassland Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2025-04-07 Published:2025-11-26 Online:2025-12-09

摘要:

目的 探索在长日照条件下,蒺藜苜蓿开花过程中的DNA甲基化变化,探究光周期相关基因与DNA甲基化的可能关系。 方法 利用全基因组亚硫酸氢盐测序(WGBS)检测营养期和开花期的蒺藜苜蓿叶片,分析DNA甲基化差异。 结果 (1)甲基化类型主要为CG型(69.74%),其次是CHG(35.22%)和CHH(21.81%);基因上游的CHG甲基化,以及基因上下游及基因体区域的CHH甲基化水平均是营养期比开花期的高。(2)差异甲基化区域(DMR)共有20 647个,其中CHH型最多(11 247个),且68%为低甲基化区域。(3)基于基因本体(GO)和信号通路(KEGG)对全部DMR关联基因(DMG)进行分析,发现DMG主要参与在高亲和力寡肽跨膜转运蛋白活性、FAD结合核苷三磷酸酶活性、ATP酶活性、水解酶活性,作用于酸酐四氢叶酸生物合成过程等通路中。(4)参与光周期开花途径关键基因CRY1CRY2FKF1PHYAELF3COL2FTLHYZTL都发生了显著的甲基化水平改变。 结论 DNA甲基化可能参与调控蒺藜苜蓿开花,探索了蒺藜苜蓿光周期诱导成花过程中DNA甲基化的可能角色,为蒺藜苜蓿育种研究提供新见解。

关键词: 蒺藜苜蓿, 开花, DNA甲基化, 转录因子, 光周期

Abstract:

Objective To investigate DNA methylation variations during flowering in Medicago ruthenica under long-day conditions and explore the potential relationship between photoperiod-related genes and DNA methylation. Method Whole-genome bisulfite sequencing (WGBS) was performed on M. ruthenica leaves at the vegetative and flowering stages to analyze differences in DNA methylation. Result 1) The predominant type of methylation was CG (69.74%), followed by CHG (35.22%) and CHH (21.81%). CHG methylation upstream of genes and CHH methylation in upstream, downstream, and gene body regions were all higher during the vegetative stage than in the flowering stage. 2) A total of 20 647 differentially methylated regions (DMRs) were identified, with CHH-type DMRs accounting for the majority (11 247), and 68% of them showing hypomethylation. 3) Gene Ontology (GO) and KEGG pathway analyses of all DMR-associated genes (DMGs) revealed that these genes were mainly involved in high-affinity oligopeptide transmembrane transporter activity, FAD-binding nucleoside triphosphatase activity, ATPase activity, and hydrolase activity acting on acid anhydrides, as well as in pathways such as tetrahydrofolate biosynthesis. 4) Key genes in the photoperiodic flowering pathway, including CRY1, CRY2, FKF1, PHYA, ELF3, COL2, FT, LHY, and ZTL,presented significant changes in DNA methylation levels. Conclusion DNA methylation may be involved in the regulation of flowering in M. ruthenica. This study provides new insights into the potential role of DNA methylation in photoperiod-induced flowering, offering valuable information for M. ruthenica breeding research.

Key words: Medicago truncatula, flowering, DNA methylation, transcription factors, photoperiod