[1]Christie JM. Phototropin blue-light receptors[J]. Annu Rev Plant Biol, 2007, 58(6):21-45. [2]Lariguet P, Boccalandro HE, Alonso JM, et al. A growth regulatory loop that provides homeostasis to phytochrome A signaling[J]. Plant Cell, 2003, 15(12):2966-2978. [3]Molas ML, Kiss JZ. PKS1 plays a role in red-light-based positive phototropism in roots[J]. Plant Cell Environ, 2008, 31(6):842-849. [4]Schepens I, Boccalandro HE, Kami C, et al. PHYTOCHROME KINASE SUBSTRATE 4 modulates phytochrome-mediated control of hypocotyl growth orientation[J]. Plant Physiol, 2008, 147(2):661-671. [5]Lariguet P, Schepens I, Hodgson D, et al. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism[J]. Proc Natl Acad Sci USA, 2006, 103(26):10134-10139. [6]Carbonnel M, Davis P, Roelfsema MRG, et al. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE 2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning1[J]. Plant Physiol, 2010, 152(3):1391-1405. [7]Zhao X, Wang YL, Qiao XR, et al. Phototropins function in high-intensity-blue-light-induced hypocotyls phototropism in Arabidopsis by altering cytosolic calcium[J]. Plant Physiol, 2013, 162(3):1539-1551. [8]Boccalandro HE, De Simone SN, Bergmann-Honsberger A, et al. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism[J]. Plant Physiol, 2008, 146(1):108-115. [9]Hepler PK. Calcium:a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8):2142-2155. [10] Babourina O, Newman I, Shabala S. Blue light induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings[J]. Proc Natl Acad Sci USA, 2002, 99(4):2433-2438. [11] Baum G, Long JC, Jenkins JI, et al. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+[J]. Proc Natl Acad Sci USA, 1999, 96(23):13554-13559. [12] Harada A, Sakai T, Okada K. Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves[J]. Proc Natl Acad Sci USA, 2003, 100(14):8583-8588. [13]Gehring CA, Williams DA, Cody SH, et al. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium[J]. Nature, 1990, 345:528-530. [14]Esmon CA, Tinsley AG, Ljung K, et al. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA, 2006, 103(1):236-241. [15]McCormack E, Tsai Y, Braam J. Handling calcium signalling:Arabidopsis CaMs and CMLs[J]. Trends Plant Sci, 2005, 10(8):383-389. [16]Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells[J]. Nucleic Acids Res, 1992;20(6):1425. [17]Walter M, Chaban C, Schütze K, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation[J]. Plant J, 2004, 40(3):428-438. [18]Inada S, Ohgishi M, Mayama T, et al. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(4):887-896. [19] Kaiserli E, Sullivan S, Jones MA, et al. Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light[J]. Plant Cell, 2009, 21(10):3226-3244. [20] Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement [J]. Molecular Plant, 2011, 4(5):771-781. |