[1] 张党权, 宋志丹, 田晔林, 等. 抗逆模式灌木沙冬青的研究进展[J]. 中南林业科技大学学报, 2012(2):16-22. [2] 冯金朝, 周宜君, 周海燕, 等. 沙冬青对土壤水分变化的生理响应[J]. 中国沙漠, 2001(3):9-12. [3] 周宜君, 刘春兰, 冯金朝, 等. 沙冬青抗旱、抗寒机理的研究进展[J]. 中国沙漠, 2001(3):98-102. [4] 李文瑞, 冯金朝, 江天然, 等. 沙冬青几种光合特性的季节性变化的研究[J]. 植物学报, 1999(2):190-193. [5] Boyer JS. Plant productivity and environment[J]. Science, 1982, 218(4571):443-448. [6] Kanneganti V, Gupta AK. Overexpression of OsiSAP8, a member of stress associated protein(SAP)gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice[J]. Plant Mol Biol, 2008, 66(5):445-462. [7] Delauney AJ, Hu CA, Kishor PB, Verma DP. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis[J]. J Biol Chem, 1993, 268(25):18673-18678. [8] 李玲, 余光辉, 曾富华. 水分胁迫下植物脯氨酸累积德分子机理[J]. 华南师范大学学报:自然科学版, 2003(1):126-134. [9] 朱金方, 陆兆华, 夏江宝, 等. 盐旱交叉胁迫对怪柳幼苗渗透调节物质含量的影响[J]. 西北植物学报, 2013(2):357-363. [10] 吴雪霞, 朱月林, 朱为民, 等. 外源—氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J]. 西北植物学报, 2006(6):1206-1211. [11] Schwacke R, Grallath S, Breitkreuz KE, et al. LeProTl, a transporter for Proline, glycine betaine, and(gamma)-amino butyric acid in tomato pollen[J]. Plant Cell, 1999, 11(3):377-392. [12] Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced praline transporters and saltstress-repressed broad specificity amino acid permeases identified by suppression of a yeast aminoacid permease-targeting mutant[J]. Plant Cell, 1996, 8:1437-1446. [13] Igarashi Y, Yoshiba Y, Takeshita T, et al. Molecular cloning and characterization of a cDNA encoding praline transporter in rice[J]. Plant and Cell Physiology, 2000, 41:750-756. [14] Shen YG, Zhang WK, Yan DQ, et al. Overexpression of prolinetransporter gene isolated from halophyte confers salt tolerance in Arabidopsis[J]. Acta Botanica Sinica, 2002, 44(8):956-962. [15] Ueda A, Shiwm M, Sanmiya K, et al. Functional analysis of salt-inducibleproline transporter of barley roots[J]. Plant and Cell Physiology, 2001, 42:1282-1289. [16] Udea A, Yamane YY, Takabe T. Salt stress enhances proline utilization in the apical region ofbarley roots[J]. Biochemical and Biophysical Research Communication, 2007(37):61-66. [17] Silke G, Thilo W, Andreas M, et al. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns[J]. Plant Physiology, 2005, 137:117-126. [18] Wei Q, Guo YJ, Cao HM, Kuai BK. Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthusmongolicus(Leguminosae)and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana[J]. Plant Cell Tissue and Organ Culture, 2011, 105(3):309-316. [19] Liu RL, Liu MQ, Liu J, et al. Heterologous expression of aAmmopiptanthusmongolicuslate embryogenesis abundant protein gene(AmLEA)enhances Escherichia coli viability under cold and heat stress[J].Plant Growth Regulation, 2010, 60(2):163-168. [20] Song J, Liu J, Weng ML, et al. Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants[J]. Gene, 2013, 513(1):118-127. [21] Zhou YJ, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyro sequencing to discover putative genes associated with drought tolerance inAmmopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:133. [22] Pang T, Ye CY, Xia XL, Yin WL. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa[J]. BMC Genomics, 2013, 14:488. [23] Wu YQ, Wei W, Pang XY, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2013, 15:671. [24] 夏晗, 黄金生. 低温、干旱和盐胁迫下沙冬青幼苗脯氨酸含量的变化[J]. 吉林林业科技, 2007, 36(4):1-2, 20. [25] Rouhi V, Samson R, Lemeur R, et al. Stomatal resistance under drought stress conditions induced by PEG 6000 on wild Almond[J]. Commun Agric Appl Biol Sci, 2006, 71(1):269-273. [26] Rungaroon W, Takashi H, Yoshito T, et al. Functional characterization of betaine/proline transportersin betaine-accumulating Mangrove[J]. The Journal of Biological Chemistery, 2002, 277:18373-18382. [27] Szabados L, Savoure A. Proline:a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15:89-97. [28] Girousse C, Boumoville R, Bonnemain JL. Water deficit induces changes in concentrations inpraline and some other amino acids in the phloem sap of alfalfa[J]. Plant Physilolgy, 1996, 111:109-113. [29] Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced praline transporters and saltstress-repressed broad specificity amino acid permeases identified by suppression of a yeast aminoacid permease-targeting mutant[J]. Plant Cell, 1996, 8:1437-1446. [30] Ueda A, Shiwm M, Sanmiya K, et al. Functional analysis of salt-inducibleproline transporter of barley roots[J]. Plant and Cell Physiology, 2001, 42:1282-1289. [31] Sandeep S, Joji GV, Paul EV. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential[J]. Plant Physiology, 2011, 157:292-304. |