Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (8): 35-43.doi: 10.13560/j.cnki.biotech.bull.1985.2015.08.006
• Review • Previous Articles Next Articles
Li Yulong, Han Zhengmin
Received:
2014-11-06
Online:
2015-08-21
Published:
2015-08-22
Li Yulong, Han Zhengmin. The Applicatioin of Stenotrophomonas maltophilia in Environmental Remediation and Agriculture[J]. Biotechnology Bulletin, 2015, 31(8): 35-43.
[1] Moore ER, Krüger AS, Hauben L, et al. 16S rRNA gene sequence analyses and inter-and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia[J]. FEMS Microbiology Letters, 1997, 151(2):145-153. [2] Denton M, Kerr KG. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia[J]. Clinical Microbiology Reviews, 1998, 11(1):57-80. [3] Romanenko LA, Uchino M, Tanaka N, et al. Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep-sea invertebrates[J]. Arch Microbiol, 2008, 189(4):337-344. [4] Berg G, Marten P, Ballin G. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape—occurrence, characterization and interaction with phytopathogenic fungi[J]. Microbiological Research, 1996, 151(1):19-27. [5] Minkwitz A, Berg G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia[J]. J Clin Microbiol, 2001, 39(1):139-145. [6] Brooke JS. Stenotrophomonas maltophilia:an emerging global opportunistic pathogen[J]. Clin Microbiol Rev, 2012, 25(1):2-41. [7] Park M, Kim C, Yang J, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea[J]. Microbiol Res, 2005, 160(2):127-133. [8] Binks PR, Nicklin S, Bruce NC. Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine(RDX)by Stenotrophomonas maltophilia PB1[J]. Applied and Environmental Microbiology, 1995, 61(4):1318-1322. [9] Elvers K, Leeming K, Lappin-Scott H. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum [J]. Journal of Industrial Microbiology and Biotechnology, 2001, 26(3):178-183. [10] Turrientes MC, Baquero MR, Sánchez MB, et al. Polymorphic muta-tion frequencies of clinical and environmental Stenotrophomonas maltophilia populations[J]. Applied and Environmental Microb-iology, 2010, 76(6):1746-1758. [11] Fuerst J, Hayward A. Surface appendages similar to fimbriae(pili)on Pseudomonas species[J]. Journal of General Microbiology, 1969, 58(2):227-237. [12] Ikemoto S, Suzuki K, Kaneko T, et al. Characterization of strains of Pseudomonas maltophilia which do not require methionine[J]. International Journal of Systematic Bacteriology, 1980, 30(2):437-447. [13] Hugh R, Ryschenkow E. Pseudomonas maltophilia, an Alcaligenes-like species[J]. Journal of General Microbiology, 1961, 26(1):123-132. [14] Swings J, De Vos P, den Mooter MV, et al. Transfer of Pseudomonas maltophilia hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia(Hugh 1981)comb. nov[J]. International Journal of Systematic Bacteriology, 1983, 33(2):409-413. [15] Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia(Hugh 1980)Swings et al. 1983[J]. International Journal of Systematic Bacteriology, 1993, 43(3):606-609. [16] 胡田雨, 曲俊彦, 谢轶, 等. 嗜麦芽窄食单胞菌感染的危险因素及耐药性分析[J]. 中国感染与化疗杂志, 2014, 14(2):112-115. [17] 宁立芬, 马红玲, 汪玉珍. 2011-2012 年铜绿假单胞菌对抗菌药物耐药性分析[J]. 中华医院感染学杂志, 2014, 24(5):1134-1135. [18] 焦江琴, 李捷, 陈双双. 嗜麦芽窄食单胞菌鉴定及对抗生素的敏感性分析[J]. 医学综述, 2014, 20(3):553-554. [19] Gao S, Seo JS, Wang J, et al. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6[J]. International Biodeterioration & Biodegradation, 2013, 79(Complete):98-104. [20] 章俭, 夏春谷. 芳香烃双加氧酶的结构与功能研究[J]. 化学进展, 2004, 16(1):116-122. [21] John R, Essien J, Akpan S, et al. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6):1014-1019. [22] Juhasz AL, Stanley GA, Britz ML. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10, 003[J]. Letters in Applied Microbiology, 2000, 30(5):396-401. [23] Juhasz AL, Stanley G, Britz M. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10, 003[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(2):88-96. [24] Gür Ö, Özdal M, Algur ÖF. Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2[J]. Turkish Journal of Biology, 2014, 38:684-689. [25] 李兵, 张庆芳, 窦少华, 等. 低温石油烃降解菌 LHB16 的筛选及降解特性[J]. 大连大学学报, 2010(6):72-74. [26] Lu Z, Sang L, Li Z, et al. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution[J]. Ecotoxicol Environ Saf, 2009, 72(1):136-143. [27] Urszula G, Izabela G, Danuta W, et al. Isolation and characteriza-tion of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation[J]. Brazilian Journal of Microbiology, 2009, 40(2):285-291. [28] Lee EY, Jun YS, Cho KS, et al. Degradation Characteristics of Toluene, Benzene, Ethylbenzene, and Xylene byStenotrophomonas maltophiliaT3-c[J]. Journal of the Air & Waste Management Association, 2002, 52(4):400-406. [29] Benson SB, Osborne TR, Revis NW. Reduction of trace elements to the elemental form by microorganisms:United States, 4728427[P]1988. 1. 3. [30] Pages D, Rose J, Conrod S, et al. Heavy metal tolerance in Stenotrophomonas maltophilia[J]. PLoS One, 2008, 3(2):e1539. [31] Holmes A, Vinayak A, Benton C, et al. Comparison of two multimetal resistant bacterial strains:Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2[J]. Current Microbiology, 2009, 59(5):526-531. [32] Antonioli P, Lampis S, Chesini I, et al. Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices[J]. Appl Environ Microbiol, 2007, 73(21):6854-6863. [33] Fauchon M, Lagniel G, Aude JC, et al. Sulfur sparing in the yeast proteome in response to sulfur demand[J]. Molecular Cell, 2002, 9(4):713-723. [34] 陈烁娜, 尹华, 叶锦韶, 等. 嗜麦芽窄食单胞菌处理苯并[a]芘-铜复合污染过程中细胞表面特性的变化[J]. 化工学报, 2012, 63(5):1592-1598. [35] Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants[J]. Genome Biology, 2008, 9(4):R74. [36] Mahaffee W, Kloepper J. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber(Cucumis sativus L.)[J]. Microbial Ecology, 1997, 34(3):210-223. [37] Berg G, Roskot N, Steidle A, et al. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants[J]. Applied and environmental Microbiology, 2002, 68(7):3328-3338. [38] Schwieger F, Tebbe CC. Effect of field inoculation with Sinorhizob-ium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant(Medicago sativa)and a non-target plant(Chenopodium album)—linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria[J]. Applied and Environmental Microbiology, 2000, 66(8):3556-3565. [39] Chelius MK, Triplett EW. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L.[J]. Applied and Environmental Microbiology, 2000, 66(2):783-787. [40] Mehnaz S, Mirza MS, Haurat J, et al. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice[J]. Canadian Journal of Microbiology, 2001, 47(2):110-117. [41] Germida J, Siciliano S. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars[J]. Biology and Fertility of Soils, 2001, 33(5):410-415. [42] Sturz A, Matheson B, Arsenault W, et al. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils[J]. Canadian Journal of Microbiology, 2001, 47(11):1013-1024. [43] Taghavi S, Garafola C, Monchy S, et al. Mechanisms underlying the beneficial effects of endophytic bacteria on growth and development of poplar[J]. Applied and Environmental Microbiology, 2009, 75:748-757. [44] Naz I, Bano A. Assessment of phyohormones producing capacity of stenotrophomonas maltophilia SSA and its interaction with zea maysl[J]. Pakistan Journal of Botany, 2012, 44(1):465-469. [45] Vendan RT, Yu YJ, Lee SH, et al. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion[J]. The Journal of Microbiology, 2010, 48(5):559-565. [46] Suckstorff I, Berg G. Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins[J]. Journal of Applied Microbiology, 2003, 95(4):656-663. [47] 许祥明, 叶和春. 脯氨酸代谢与植物抗渗透胁迫的研究进展[J]. 植物学通报, 2000, 17(6):536-542. [48] 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展[J]. 哈尔滨师范大学自然科学学报, 2010(2):84-89. [49] Lund P, Lee RY, Dunsmuir P. Bacterial chitinase is modified and secreted in transgenic tobacco[J]. Plant Physiology, 1989, 91 (1):130-135. [50] Ryan RP, Monchy S, Cardinale M, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas[J]. Nat Rev Microbiol, 2009, 7(7):514-525. [51] Suma K, Podile AR. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities[J]. Bioresour Technol, 2013, 133:213-220. [52] Swiontek Brzezinska M, Jankiewicz U, Burkowska A, et al. Chitinolytic microorganisms and their possible application in environmental protection[J]. Curr Microbiol, 2014, 68(1):71-81. [53] Kobayashi DY, Reedy RM, Bick J, et al. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control[J]. Applied and Environmental Microbiology, 2002, 68(3):1047-1054. [54] Nakayama T, Homma Y, Hashidoko Y, et al. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease[J]. Applied and Environmental Microbiology, 1999, 65(10):4334-4339. [55] Jakobi M, Winkelmann G, Kaiser D, et al. Maltophilin:a new antifungal compound produced by Stenotrophomonas maltophilia R3089[J]. The Journal of Antibiotics, 1996, 49(11):1101-1104. [56] Dunne C, Moënne-Loccoz Y, de Bruijn FJ, et al. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81[J]. Microbiology, 2000, 146(8):2069-2078. [57] Kobayashi DY, Guglielmoni M, Clarke BB. Isolation of the chitinolytic bacteria xanthomonas maltophilia and serratia marcescens as biological control agents for summer patch disease of turfgrass[J]. Soil Biology and Biochemistry, 1995, 27(11):1479-1487. [58] Dal Bello G, Monaco C, Simon M. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms[J]. World Journal of Microbiology and Biotechnology, 2002, 18(7):627-636. [59] Messiha NAS, van Diepeningen AD, Farag NS, et al. Stenotrophomonas maltophilia:a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot[J]. European Journal of Plant Pathology, 2007, 118(3):211-225. [60] Zhang Z, Yuen G, Sarath G, et al. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3[J]. Phytopathology, 2001, 91(2):204-211. [61] Bird AF, Bird J. The structure of nematodes[M]. Burlington:Academic Press, 1991. [62] Mcclure MA, Bird A. The tylenchid(Nematoda)egg shell:formation of the egg shell in Meloidogyne javanica[J]. Parasitology, 1976, 72(1):29-39. [63] Perry RN, Wright DJ. The physiology and biochemistry of free-living and plant-parasitic nematodes[M]. CAB International, 1998. [64] Fegan N. The interaction between chitinolytic bacteria and nematode eggs[D]. Queensland:The University of Queensland, 1993:199. [65] Cronin D, Moënne-Loccoz Y, Dunne C, et al. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria[J]. European Journal of Plant Pathology, 1997, 103(5):433-440. [66] Insunza V, Alström S, Eriksson K. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato[J]. Plant and Soil, 2002, 241(2):271-278. [67] 曾腓力, 贲爱玲, 郑敬荣, 等. 美国松材线虫体表携带优势细菌的鉴定及致病性[J]. 浙江农林大学学报, 2012, 29(5):696-702. [68] 刘侃陈. 松树萎蔫病生防细菌的研究[D]. 南京:南京林业大学, 2013. [69] 孙景天. 美国菌株Smal-007对松树萎蔫病生防作用研究[D]. 南京:南京林业大学, 2014. 综述与专论 70 嗜麦芽窄食单胞菌在环保和农业生产上的应用 71 李昱龙, 韩正敏 72 (南京林业大学林学院,南京 210037) 73 摘 要: 嗜麦芽窄食单胞菌广泛分布于大自然各种环境中,它的氧化代谢系统能够有效降解烷烃及多环芳香烃污染物并将其降解,同时该菌还具有吸附重金属的能力。嗜麦芽窄食单胞菌是典型的植物促生菌,能够分泌多种酶类、抗菌素和生长素等代谢产物,促进植物生长,防控真菌病害,抑制线虫生长。嗜麦芽窄食单胞菌的这些特性在环境污染治理、农林生产方面都有较大应用价值。通过综述嗜麦芽窄食单胞菌生物除污和植物促生的作用及机理,为嗜麦芽窄食单胞菌的进一步研究和应用提供参考依据。 74 关键词: 嗜麦芽窄食单胞菌;环境修复;线虫防治;真菌防治;植物促生菌 75 DOI:10.13560/j.cnki.biotech.bull.1985.2015.08.006 76 The Applicatioin of Stenotrophomonas maltophilia in Environmental Remediation and Agriculture 77 Li Yulong ,Han Zhengmin 78 (College of Forestry,Nanjing Forestry University,Nanjing 210037) 79 Abstract: Stenotrophomonas maltophilia is a gram-negative bacterium and widely distributed in nature. It has multiple dioxygenase that can biodegrade alkane and polycyclic aromatic hydrocarbons (PAHs), and also adsorb heavy metals. S. maltophilia is a kind of typical plant growth-promoting rhizobacteria. It can secrete various hydrolytic enzymes and secondary metabolites that enhance plant growth, prevent and control fungal diseases along with nematode. Owing to the above features, S. maltophilia possesses the significant application values in environmental remediation, agriculture and forestry. The mechanisms of bioremediation and plant growth-promoting of S. maltophilia are summarized, which is expected to provide a reference for further studies and application of S. maltophilia. 80 Key words: Stenotrophomonas maltophilia; environmental remediation; nematode control; fungus control; plant growth-promoting bacteria |
[1] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[2] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[3] | JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils [J]. Biotechnology Bulletin, 2020, 36(6): 73-82. |
[4] | XU Jing-zhao, CHEN Bei, DU Bing-hai, ZHAO Dong-ying, WANG Cheng-qiang, DING Yan-qin. Isolation and Biological Characteristics of a Stenotrophomonas maltophilia [J]. Biotechnology Bulletin, 2019, 35(3): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||