Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 73-82.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1020
Previous Articles Next Articles
JIN Hai-yang1,2, WANG Hui1,2, ZHANG Yan-hui1,2, HU Tian-long1,2, LIN Zhi-bin1,2, LIU Ben-juan1,2, LIN Xing-wu1, XIE Zu-bin1
Received:
2019-10-24
Online:
2020-06-26
Published:
2020-06-28
JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils[J]. Biotechnology Bulletin, 2020, 36(6): 73-82.
[1] Galloway JN, Dentener FJ, Capone DG, et al.Nitrogen cycles:past, present, and future[J]. Biogeochemistry, 2004, 70(2):153-226. [2] Fowler D, Coyle M, Skiba U, et al.The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621):20130164. [3] Smil V.Nitrogen and food production:Proteins for human diets[J]. Ambio, 2002, 31(2):126-131. [4] Tilman D, Cassman KG, Matson PA, et al.Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898):671-677. [5] Erisman JW, Sutton MA, Galloway J, et al.How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10):636-639. [6] Storkey J, Macdonald AJ, Poulton PR, et al.Grassland biodiversity bounces back from long-term nitrogen addition[J]. Nature, 2015, 528(7582):401-404. [7] Erisman JW, Galloway JN, Seitzinger S, et al.Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621):20130116. [8] Hitz K, Clark AJ, Van Sanford DA.Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments[J]. Field Crops Research, 2017, 200:1-9. [9] Guarda G, Padovan S, Delogu G.Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels[J]. European Journal of Agronomy, 2004, 21(2):181-192. [10] Dai XL, Zhou XH, Jia DY, et al.Managing the seeding rate to improve nitrogen-use efficiency of winter wheat[J]. Field Crops Research, 2013, 154:100-109. [11] Fageria NK, Baligar VC.Enhancing nitrogen use efficiency in crop plants[J]. Advances in Agronomy, 2005, 88:97-185. [12] Dawson JC, Huggins DR, Jones SS.Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems[J]. Field Crops Research, 2008, 107(2):89-101. [13] Keuter A, Veldkamp E, Corre MD.Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices[J]. Soil Biology and Biochemistry, 2014, 70:38-46. [14] Fowler D, Steadman CE, Stevenson D, et al.Effects of global change during the 21st century on the nitrogen cycle[J]. Atmospheric Chemistry and Physics, 2015, 15(24):13849-13893. [15] Peoples MB, Herridge DF, Ladha JK.Biological nitrogen fixation:An efficient source of nitrogen for sustainable agricultural production?[J]. Plant and Soil, 1995, 174(1-2):3-28. [16] Olivares J, Bedmar EJ, Sanjuan J.Biological nitrogen fixation in the context of global change[J]. Molecular Plant-Microbe Interactions, 2013, 26(5):486-494. [17] Reed SC, Cleveland CC, Townsend AR.Functional ecology of free-living nitrogen fixation:a contemporary perspective[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42:489-512. [18] Dahal B, Nandakafle G, Perkins L, et al.Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota[J]. Microbiological Research, 2017, 195:31-39. [19] Ladha JK, Tirol-Padre A, Reddy CK, et al.Global nitrogen budgets in cereals:A 50-year assessment for maize, rice, and wheat production systems[J]. Scientific Reports, 2016, 6:19355. [20] Romero-Perdomo F, Abril J, Camelo M, et al.Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton(Gossypium hirsutum):Effect in reducing N fertilization[J]. Revista Argentina De Microbiologia, 2017, 49(4):377-383. [21] Jalilian J, Modarres-Sanavya SAM, Saberali SF, et al.Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes[J]. Field Crops Research, 2012, 127:26-34. [22] van Elsas JD, Duarte GF, Rosado AS, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment[J]. Journal of Microbiological Methods, 1998, 32(2):133-154. [23] Kizilkaya R.Yield response and nitrogen concentrations of spring wheat(Triticum aestivum)inoculated with Azotobacter chroococcum strains[J]. Ecological Engineering, 2008, 33(2):150-156. [24] Wang X, Liu B, Ma J, et al.Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China[J]. Soil Biology and Biochemistry, 2019, 131:81-89. [25] Gauri SS, Mandal SM, Mondal KC, et al.Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81[J]. Bioresource Technology, 2009, 100(18):4240-4243. [26] Brown ME, Burlingham SK, Jackson RM.Studies on Azotobacter species in soil:1. Comparison of media and techniques for counting Azotobacter in soil[J]. Plant and Soil, 1962, 17(3):309-319. [27] Aquilanti L, Favilli F, Clementi F.Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples[J]. Soil Biology and Biochemistry, 2004, 36(9):1475-1483. [28] Solanki MK, Wang Z, Wang FY, et al.Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria[J]. Sugar Tech, 2017, 19(2):136-147. [29] Kayasth M, Gera R, Dudeja SS, et al.Studies on salinization in Haryana soils on free-living nitrogen-fixing bacterial populations and their activity[J]. Journal of Basic Microbiology, 2014, 54(3):170-179. [30] Lane DJ.16S /23S rRNA sequencing[M]. Stackebrandt E, Goodfellow M. Nucleic acid techniques in bacterial systematics. New York:Wiley, 1991:115-175. [31] Kim OS, Cho YJ, Lee K, et al.Introducing EzTaxon-e:a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62:716-721. [32] Chun J, Lee JH, Jung Y, et al.EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57:2259-2261. [33] Yoon SH, Ha SM, Kwon S et al. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617. [34] Poly F, Monrozier LJ, Bally R.Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Research in Microbiology, 2001, 152(1):95-103. [35] Li DJ, Zhang QS, Xiao KC, et al.Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a karst forest, southwest China[J]. Soil Biology and Biochemistry, 2018, 118:1-7. [36] Hyman MR, Arp DJ.Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms[J]. Applied and Environmental Microbiology, 1987, 53(2):298-303. [37] Hardy RW, Holsten RD, Jackson EK, et al.The acetylene-ethylene assay for N2 fixation:laboratory and field evaluation[J]. Plant Physiology, 1968, 43:1185-1207. [38] Hardy RWF, Burns RC, Holsten RD.Applications of acetylene-ethylene assay for measurement of nitrogen fixation[J]. Soil Biology and Biochemistry, 1973, 5(1):47-81. [39] Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248-254. [40] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796. [41] Nautiyal CS.An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letters, 1999, 170(1):265-270. [42] Murphy J, Riley JP.A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 27:31-36. [43] Collavino MM, Sansberro PA, Mroginski LA, et al.Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils, 2010, 46(7):727-738. [44] Schwyn B, Neilands JB.Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56. [45] Bellenger JP, Xu Y, Zhang X, et al.Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils[J]. Soil Biology and Biochemistry, 2014, 69:413-420. [46] Bellenger JP, Wichard T, Xu Y, et al.Essential metals for nitrogen fixation in a free-living N2-fixing bacterium:chelation, homeostasis and high use efficiency[J]. Environmental Microbiology, 2011, 13(6):1395-1411. [47] Priya H, Prasanna R, Ramakrishnan B, et al.Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice[J]. Microbiological Research, 2015, 171:78-89. [48] 李雯, 阎爱华, 黄秋娴, 等. 尾矿区不同植被恢复模式下高效固氮菌的筛选及Biolog鉴定[J]. 生态学报, 2014, 34(9):2329-2337. [49] Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, et al.Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings[J]. Applied Soil Ecology, 2012, 62:52-60. [50] 李艳星, 郭平毅, 孙建光. 块根块茎类作物内生固氮菌分离鉴定、系统发育与促生特性[J]. 中国农业科学, 2017, 50(1):104-122. [51] Barraquio WL, Revilla L, Ladha JK.Isolation of endophytic diazotrophic bacteria from wetland rice[J]. Plant and Soil, 1997, 194:15-24. [52] 孙建光, 胡海燕, 刘君, 等. 农田环境中固氮菌的促生潜能与分布特点[J]. 中国农业科学, 2012, 45(8):1532-1544. [53] 徐秀倩, 吴小芹, 吴天宇, 等. 林木根际细菌JYZ-SD5的促生抗逆性能及种类鉴定[J]. 生物技术通报, 2019, 35(3):31-38. [54] Franche C, Lindstrom K, Elmerich C.Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants[J]. Plant and Soil, 2009, 321:35-59. [55] Li HB, Singh RK, Singh P, et al.Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere[J]. Frontiers in Microbiology, 2017, 8:1268. [56] Kirchhof G, Reis VM, Baldani JI, et al.Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants[J]. Plant and Soil, 1997, 194(1-2):45-55. [57] Coelho MRR, Marriel IE, Jenkins SN, et al.Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum(Sorghum bicolor)sown with two levels of nitrogen fertilizer[J]. Applied Soil Ecology, 2009, 42(1):48-53. [58] Zhan J, Sun QY.Diversity of free-living nitrogen-fixing microorg-anisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings[J]. Microbiolo-gical Research, 2012, 167(3):157-165. [59] Gaby JC, Buckley DH.A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase[J]. PLoS One, 2012, 7 (7):e42149. [60] 张亮, 袁玲, 黄建国. 自生固氮菌对土壤钾的活化作用[J]. 土壤学报, 2015, 52(2):399-405. [61] 张亮, 杨宇虹, 李倩, 等. 自生固氮菌活化土壤无机磷研究 [J]. 生态学报, 2013, 33(7):2157-2164. [62] 陈胜男, 谷洁, 付青霞, 等. 接种自生固氮菌对玉米根际土壤酶活性和细菌群落功能多样性的影响[J]. 植物营养与肥料学报, 2012, 18(2):444-450. [63] Thavasi R, Subramanyam Nambaru VR, Jayalakshmi S, et al.Biosurfactant production by Azotobacter chroococcum isolated from the marine environment[J]. Marine Biotechnology, 2009, 11:551-556. |
[1] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[2] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[3] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[4] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[5] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[6] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[7] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[8] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[9] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[10] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[11] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[12] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[13] | ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism [J]. Biotechnology Bulletin, 2022, 38(4): 230-241. |
[14] | ZOU Xue-feng, LI Ming-gang, BAO Ling-feng, CHEN Qi-bin, ZHAO Jiang-yuan, WANG Lin, PU Yong-yu, HAO Da-cheng, ZHANG Qing, YANG Pei-wen. Isolation and Identification of a Secretory Siderophore Fungus,and Its Biological Activity [J]. Biotechnology Bulletin, 2022, 38(3): 130-138. |
[15] | XIE Tian-peng, LIU Na, LIU Yue-min, QU Xin, BO Shuang-qin, JING Ming. Effects of Chemical Fertilizer Reduction and Application of Plant Growth Regulators from Traditional Chinese Medicine on the Quality and Its Bacterial Community in Rhizosphere Soil [J]. Biotechnology Bulletin, 2022, 38(3): 79-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||