[1]Stetter KO. A brief history of the discovery of hyperthermophilic life[J]. Biochem Soc Trans, 2013, 41(1):416-420.
[2]Bl?chl E, Rachel R, Burggraf S, et al. Pyrolobus fumarii, gen. and sp. nov. , represents a novel group of archaea, extending the upper temp-erature limit for life to 113℃[J]. Extremophiles, 1997, 1:14-21.
[3]Stetter KO. History of discovery of the first hyperthermophiles[J]. Extremophiles, 2006, 10(5):357-362.
[4]Mehta D, Satyanarayana T. Diversity of hot environments and thermophilic microbes[M]// Satyanarayana T, Littlechild JA. Thermophilic Microbes in Environmental and Industrial Biotechnology. Netherlands:Springer Netherlands, 2013:3-60.
[5]Averhoff B, Müller V. Exploring research frontiers in microbiology:recent advances in halophilic and thermophilic extremophiles[J]. Research in Microbiology, 2010, 161(6):506-514.
[6]Woese CR, Kandler O, Wheelis ML. Towards a natural system of org-anisms:proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc Natl Acad Sci USA, 1990, 87(12):4576-4579.
[7]Huber H, Hohn MJ, Rachel R, et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont[J]. Nature, 2002, 417(6884):63-67.
[8]Kashefi K, Lovley DR. Extending the upper temperature limit for life[J]. Science, 2003, 301(5635):934-934.
[9]Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressure cultivation[J]. Proceedings of the National Academy of Sciences, 2008, 105(31):10949-10954.
[10]Lal AK. Origin of life[J]. Astrophys Space Sci, 2008, 317:267-278.
[11]Forterre P. A hot topic:the origin of hyperthermophiles[J]. Cell, 1996, 85(6):789-792.
[12]Stetter KO. History of discovery of hyperthermophiles[M]. Extremophiles Handbook. Springer Japan, 2011:403-425.
[13]Kelly RM, Adams MW. Metabolism in hyperthermophilic microorg-anisms[J]. Antonie Van Leeuwenhoek, 1994, 66:247-270.
[14]Mardanov AV, Svetlitchnyi VA, Beletsky AV, et al. The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs[J]. Applied and Environmental Microbiology, 2010, 76(16):5652-5657.
[15]Jaenicke R, Sterner R. Life at High Temperatures[M]. The Prokaryotes. Berlin:Springer Berlin Heidelberg, 2013:337-374.
[16]Imanaka T. Molecular bases of thermophily in hyperthermophiles[J]. Proc Jap Acad Ser B Phys Biol Sci, 2010, 87:587-602.
[17]Daniel RM, Cowan DA. Biomolecular stability and life at high temperatures[J]. Cell Mol Life Sci, 2000, 57(2):250-264.
[18]Ulrih NP, Gmajner D, Raspor P. Structural and physicochemical properties of polar lipids from thermophilic archaea[J]. Applied Microbiology and Biotechnology, 2009, 84(2):249-260.
[19]Atomi H, Matsumi R, Imanaka T. Reverse gyrase is not a prerequ-isite for hyperthermophilic life[J]. Journal of Bacteriology, 2004, 186(14):4829-4833.
[20]Robinson H, Gao YG, Mcrary BS, et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA[J]. Nature, 1998, 392(6672):202-205.
[21]Noon KR, Bruenger E, Mccloskey JA. Posttranscriptional modifica-tions in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus[J]. J Bacteriol, 1998, 180(11):2883-2888.
[22]Tanaka T, Sawano M, Ogasahara K, et al. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150℃[J]. FEBS Letters, 2006, 580(17):4224-4230.
[23]Koch R, Spreinat A, Lemke K, et al. Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei[J]. Arch Microbiol, 1991, 155(6):572-578.
[24]Vieille C, Zeikus GJ. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1):1-43.
[25]Teplyakov AV, Kuranova IP, Harutyumyan EH, et al. Crystal structure of thermitase at 1. 4 ? resolution[J]. Journal of Molecular Biology, 1990, 214(1):261-279.
[26]Littlechild J, Novak H, James P, et al. Mechanisms of thermal stability adopted by thermophilic proteins and their use in white biotechnology[M]//Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer Netherlands, 2013:481-507.
[27]Coquelle N, Fioravanti E, Weik M, et al. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments[J]. J Mol Biol, 2007, 374(2):547-562.
[28]Sterner RH, Liebl W. Thermophilic adaptation of proteins[J]. Criti Rev Biochem Mol Biol, 2001, 36(1):39-106.
[29]Dong H, Mukaiyama A, Tadokoro T, et al. Hydrophobic effect on the stability and folding of a hyperthermophilic protein[J]. Journal of Molecular Biology, 2008, 378(1):264-272.
[30]Hiblot J, Bzdrenga J, Champion C, et al. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia[J]. Scientific Reports, 2015, 5:8372.
[31]Macedo-Ribeiro S, Darimont B, Sterner R, et al. Small structural changes account for the high thermostability of 1[4Fe-4S]ferredoxin from the hyperthermophilic bacterium Thermotoga maritima[J]. Structure, 1996, 4(11):1291-1301.
[32] Savchenko A, Vieille C, Kang S, et al. Pyrococcus furiosus α-amylase is stabilized by calcium and zinc[J]. Biochemistry, 2002, 41(19):6193-6201.
[33]Zeng J, Gao XW, Dai Z, et al. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site[J]. Applied and Environmental Microbiology, 2014, 80(9):2763-2772.
[34]Guelorget A, Roovers M, Guerineau V, et al. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase[J]. Nucleic Acids Research, 2010, 38(18):6206-6218.
[35]Grabarse W, Vaupel M, Vorholt JA, et al. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri[J]. Structure, 1999, 7(10):1257-1268.
[36]Eichler J, Adams MW. Posttranslational protein modification in Archaea[J]. Microbiol Mol Biol Rev, 2005, 69(3):393-425.
[37]Dai Z, Fu HT, Zhang YF, et al. Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension[J]. Applied and Environmental Microbiology, 2012, 78(12):4233-4241.
[38]Neves C, Da Costa MS, Santos H. Compatible solutes of the hyperthermophile Palaeococcus ferrophilus:osmoadaptation and thermoadaptation in the order Thermococcales[J]. Applied and Environmental Microbiology, 2005, 71(12):8091-8098.
[39]Shima S, Herault DA, Berkessel A, et al. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri[J]. Archives of Microbiology, 1998, 170(6):469-472.
[40]Mayr J, Lupas A, Kellermann J, et al. A hyperthermostable protease of the subtilisin family bound to the surface layer of the Archaeon Staphylothermus marinus[J]. Curr Biol, 1996, 6:739-749.
[41]Van Boxstael S, Maes D, Cunin R, Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi[J]. FEBS Journal, 2005, 272(11):2670-2683.
[42]Sterner R, Kleemann GR, Szadkowski H, et al. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer[J]. Protein Sci, 1996, 5:2000-2008.
[43]Mukund S, Adams M. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway[J]. Journal of Biological Chemistry, 1991, 266(22):14208-14216.
[44]Atomi H, Sato T, Kanai T. Application of hyperthermophiles and their enzymes[J]. Curr Opin Biotechnol, 2011, 22(5):618-626. |