[1]https://en.wikipedia.org/wiki/DNA_sequencing.com/. [2]http://www.genome.gov/sequencingcosts.com/. [3]Putnam NH, O’Connell B, Stites JC, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage[J]. ArXiv, 2015, Available online at: http://arxiv.org/abs/1502.05331. [4]Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions[J]. Nature Reviews Genetics, 2012, 13(1): 36-46. [5]马艳玲, 邓海, 刘中来, 等. 海洋放线菌Streptomyces sp. 大片段DNA基因组文库的构建[J]. 生物技术, 2010(5): 1-3. [6]Claros MG, Bautista R, Guerrero-Fernández D, et al. Why assembling plant genome sequences is so challenging[J]. Biology, 2012, 1(2): 439-459. [7]Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation[J]. Science, 2002, 295(5558): 1306-1311. [8]Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science, 2009, 326(5950): 289-293. [9]Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 2014, 159(7): 1665-1680. [10]翟侃, 武治印, 于典科. 染色质构象捕获及其衍生技术[J]. 生物化学与生物物理进展, 2010, 37(9): 939-944. [11]Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data[J]. Nat Rev Genet, 2013, 14: 390-403. [12]彭城, 李国亮, 张红雨, 阮一骏. 染色质三维结构重建及其生物学意义[J]. 中国科学: 生命科学, 2014, 44(8): 794-802. [13]李国亮, 阮一骏, 谷瑞升, 等. 起航三维基因组学研究[J]. 科学通报, 2014, 59: 1165-1172. [14]Kaplan N, Dekker J. High-throughput genome scaffolding from in vivo DNA interaction frequency[J]. Nature Biotechnology, 2013, 31(12): 1143-1147. [15]Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions[J]. Nature Biotechnology, 2013, 31(12): 1119-1125. [16]Marie-Nelly H, Marbouty M, Cournac A, et al. High-quality genome(re)assembly using chromosomal contact data[J]. Nature Communications, 2014, 5: 5695. [17]Burton JN, Liachko I, Dunham MJ, et al. Species-Level deconvolution of metagenome assemblies with Hi-C Based contact probability maps[J]. G3: Genes/Genomes/Genetics, 2014, 4(7): 1339-1346. [18] Schneeberger K, Ossowski S, Ott F, et al. Reference-guided assem-bly of four diverse Arabidopsis thaliana genomes[J]. Proc Natl Acad Sci USA, 2011, 108(25): 10249-10254. [19] Xie T, Zheng JF, Liu S, et al. De novo plant genome assembly based on chromatin interactions: A case study of Arabidopsis thaliana[J]. Molecular Plant, 2015, 8(3): 489-492. [20] Imakaev M, Fudenberg G, McCord RP, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization[J]. Nature Methods, 2012, 9(10): 999-1003. [21]Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture[J]. Nature Genetics, 2011, 43(11): 1059-1065. [22]Xie T, Fu LY, Yang QY, et al. Spatial features for Escherichia coli genome organization[J]. BMC Genomics, 2015, 16(1): 37. [23]Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 2012, 485(7398): 376-380. [24]Adey A, Kitzman JO, Burton JN, et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity[J]. Genome Research, 2014, 24(12): 2041-2049. |