Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 52-57.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.002
• Orginal Article • Previous Articles Next Articles
WANG Kai, LI Wen-xue
Received:
2016-07-15
Online:
2016-10-25
Published:
2016-10-12
WANG Kai, LI Wen-xue. Progresses on Molecular Mechanisms of Low-phosphorus Tolerance in Maize[J]. Biotechnology Bulletin, 2016, 32(10): 52-57.
[1] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5):915-924. [2] 路立平, 赵化春, 赵娜, 等. 世界玉米产业现状及发展前景[J]. 玉米科学, 2006, 14(5):149-151. [3] 龙俐至. 磷高效玉米根系形态与生理特性研究[D]. 北京:中国农业大学, 2011. [4] Carlos CV, Fulgencio AC, June SW, et al. Maize under phosphate limitation[M]. Handbook of Maize:Its Biology, New York, Springer online, 2009:381-404. [5] Plaxton WC, Tran HT. Metabolic adaptations of phosphate-starved plants[J]. Plant Physiol, 2011, 156(3):1006-1015. [6] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216:23-27. [7] Poirier Y, Bucher M. Phosphate transport and homeostasis in Arabidopsis[M]. The Arabidopsis Book, 2002, 1:e0024. [8] Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome(Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296:92-100. [9] Nagy R, Vasconcelos MJ, Zhao S, et al. Differential regulation of five Pht1 phosphate transporters from maize(Zea mays L. )[J]. Plant Biol, 2006, 8(2):186-197. [10] 徐媛媛. 玉米Pht1家族磷转运蛋白基因的克隆及功能分析[D]. 北京:中国农业大学, 2012. [11] Liu F, Xu F, Jiang H, et al. Systematic identification, evolution and expression analysis of the zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi[J]. Int Mol Sci, 2016, 17(6):E930. [12] Nilsson L, Müller R, Nielsen TH. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana[J]. Plant Cell Environ, 2007, 30:1499-1512. [13] Zhou J, Jiao F, Wu Z, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiol, 2008, 146(4):1673-1686. [14] Wang H, Xu Q, Kong YH, et al. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation[J]. Plant Physiol, 2014, 164:2020-2029. [15] Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J]. Plant Physiol, 2007, 143:1789-1801. [16] Dai XY, Wang YY, Zhang WH. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. J Exp Bot, 2016, 67(3):947-960. [17] Devaiah BN, Nagarajan VK, Raghothama KG. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J]. Plant Physiol, 2007, 145:147-159. [18] Yi K, Wu Z, Zhou J, et al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice[J]. Plant Physiol, 2005, 138(4):2087-2096. [19] Chen ZH, Nimmo GA, Jenkins GI, et al. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J]. Biochem J, 2007, 405:191-198. [20] Li Z, Gao Q, Liu Y, et al. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth[J]. Planta, 2011, 233:1129-1143. [21] Wang X, Bai J, Liu H, et al. Overexpression of a maize transcription factor ZmPHR1 improves shoot inorganic phosphate content and growth of Arabidopsis under low-phosphate conditions[J]. Plant Mol Biol Rep, 2013, 31:665-677. [22] Lin SI, Chiang SF, Lin WY, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant Physiol, 2008, 147(2):732-746. [23] Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 18(2):412-421. [24] Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant J, 2008, 53(5):731-738. [25] Bari R, Datt Pant B, Stitt M et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiol, 2006, 141(3):988-999. [26] Hu B, Zhu CG, Li F, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiol, 2011, 156(3):1101-1115. [27] Peng M, Hannam C, Gu H, et al. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. Plant J, 2007, 50(2):320-337. [28] Pei L, Jin Z, Li K, et al. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes[J]. Plant Physiol Bioch, 2013, 70:221-234. [29] Zhang B, Pan X, Anderson TA. Identification of 188 conserved maize microRNAs and their targets[J]. FEBS Lett, 2006, 580(15):3753-3762. [30] Zhang L, Chia JM, Kumari S, et al. A genome-wide characterization of microRNA genes in maize[J]. PLoS Genet, 2009, 5(11):e1000716. [31] Kant S, Peng M, Rothstein SJ. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genet, 2011, 7(3):e1002021. [32] Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, et al. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels[J]. J Exp Bot, 2008, 59(9):2479-2497. [33] Li Z, Xu C, Li K, et al. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone[J]. BMC Plant Biol, 2012, 12:89. [34] Lin HJ, Gao J, Zhang ZM, et al. Transcriptional responses of maize seedling root to phosphorus starvation[J]. Mol Biol Rep, 2013, 40(9):5359-5379. [35] Du QG, Wang K, Xu C, et al. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize[J]. BMC Plant Biol. (accepted) [36] Li K, Xu C, Zhang K, et al. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize(Zea mays L.)plants[J]. Proteomics, 2007, 7(9):1501-1512. [37] Li K, Xu C, Li Z, et al. Comparative proteome analyses of phosphorus responses in maize(Zea mays L.)roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency[J]. Plant J, 2008, 55(6):927-939. [38] Zhang K, Liu H, Song J, et al. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling[J]. BMC Plant Biol, 2016, 16(1):129. [39] Zhu J, Kaeppler SM, Lynch JP. Mapping of QTLs for lateral root branching and length in maize(Zea mays L. )under differential phosphorus supply[J]. Theor Appl Genet, 2005, 111:688-695. [40] Zhu J, Mickelson SM, Kaeppler SM, et al. Detection of quantitative trait loci for seminal root traits in maize(Zea mays L. )seedlings grown under differential phosphorus levels[J]. Theor Appl Genet, 2006, 113:1-10. [41] Chen J, Xu L, Cai Y, et al. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize(Zea mays L. )at two sites[J]. Plant Soil, 2008, 313:251-266. [42] Li M, Guo X, Zhang M, et al. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize(Zea mays L. )[J]. Plant Sci, 2010, 178:454-462. [43] Cai H, Chu Q, Gu R, et al. Identification of QTLs for plant height, ear height and grain yield in maize(Zea mays L. )in response to nitrogen and phosphorus supply[J]. Plant Breeding, 2012, 131:502-510. [44] Zhang HW, Uddin MS, Zou C, et al. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize[J]. J Integr Plant Biol, 2014, 56(3):262-270. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[3] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[6] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[7] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[8] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[9] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[10] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[11] | HAN Hua-rui, YANG Yu-lu, MEN Yi-han, HAN Shang-ling, HAN Yuan-huai, HUO Yi-qiong, HOU Si-yu. SiYABBYs Involved in Rhamnoside Biosynthesis During the Flower Development of Setaria italica, Based on Metabolomics [J]. Biotechnology Bulletin, 2023, 39(6): 189-198. |
[12] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
[13] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[14] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[15] | WANG Xin-lu, WANG Meng, ZHAI Wen-lei. Application of Lipidomics in Toxicological Studies [J]. Biotechnology Bulletin, 2023, 39(3): 69-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||