Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0608
Previous Articles Next Articles
LIANG Li-qin, YAN Jing, ZHANG Xin, HAO Ze-ting, DUAN Jiang-yan
Received:
2017-07-24
Online:
2018-05-26
Published:
2018-06-07
LIANG Li-qin, YAN Jing, ZHANG Xin, HAO Ze-ting, DUAN Jiang-yan. Research Progresses on the Development and Application of CRISPR Technology[J]. Biotechnology Bulletin, 2018, 34(5): 9-16.
[1] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433. [2] Jackson RN, Golden SM, van Erp PB, et al. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli[J]. Science, 2014, 345(6203):1473-1479. [3] Barrangou R, Fremaux C, Deveau H, et al.CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. [4] Marraffini LA, Sontheimer EJ. Marraffini LA, Sontheimer EJ.CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2009, 322(5909):1843-1845. [5] Jinek M, Jiang F, Taylor DW, et al.Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. [6] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [7] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [8] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [9] Wang H, Yang H, Shivalila CS, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. [10] Yang H, Wang H, Shivalila CS, et al.One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 154(6):1370-1379. [11] Jiang W, David B, David C, et al.CRISPR-assisted editing of bacterial genomes[J]. Nat Biotechnol, 2013, 31(3):233-239. [12] Dicarlo JE, Norville JE, Mali P, et al.Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Research, 2013, 41(7):4336-4343. [13] Chang N, Sun C, Gao L, et al.Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos[J]. Cell Research, 2013, 23(4):465-472. [14] Shan Q, Wang Y, Li J, et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8):686-688. [15] Soyk S, Lemmon ZH, Oved M, et al.Bypassing negative epistasis on yield in tomato imposed by a domestication gene[J]. Cell, 2017, 169(6):1142-1155. [16] Chen X, Lu X, Na S, et al.Targeted mutagenesis in cotton(Gossypium hirsutum L. )using the CRISPR/Cas9 system[J]. Sci Rep, 2017, 7:44304. [17] Niu Y, Shen B, Cui Y, et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4):836-843. [18] Midic U, Hung PH, Vincent KA, et al.Quantitative assessment of timing, efficiency, specificity, and genetic mosaicism of CRISPR/Cas9 mediated gene editing of hemoglobin beta gene in rhesus monkey embryos[J]. Human Molecular Genetics, 2017, 26(14):2678-2689. [19] Shipman SL, Nivala J, Macklis JD, et al.CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547:345-349. [20] Nelles DA, Fang MY, O'Connell MR, et al. Programmable RNA tracking in live cells with CRISPR/Cas9[J]. Cell, 2016, 165(2):488-496. [21] Eastseletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273. [22] East-Seletsky A, O’Connell MR, Burstein D, et al. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes[J]. Molecular Cell, 2017, 66(3):373-383. [23] Qi LS, Larson MH, Gilbert LA, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. [24] Mandegar MA, Huebsch N, Frolov EB, et al.CRISPR interference efficient induces specific and reversible gene silencing in human iPSCs[J]. Cell Stem Cell, 2016, 18(4):541-553. [25] Fonfara I, Richter H, Bratovič M, et al.The CRISPR-associated DNA-cleaving enzyme Cpf also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600):517-521. [26] Kim D, Kim J, Hur JK, et al.Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nat Biotechnol, 2016, 34(8):863-868. [27] Bolukbasi MF, Gupta A, Oikemus S, et al.DNA-binding-domain fusions enhance the targeting range and precision of Cas9[J]. Nature Methods, 2015, 12(12):1150-1156. [28] Dang Y, Jia G, Choi J, et al.Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency[J]. Genome Biology, 2015, 16:280. [29] Kleinstiver BP, Prew MS, Tsai SQ, et al.Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12):1293-1298. [30] Nishida K, Arazoe T, Yachie N, et al.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):1206-1207. [31] Chen F, Xiao D, Feng Y, et al.Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting[J]. Nat Commun, 2017, 8:14958. [32] Jiang F, Taylor DW, Chen JS, et al.Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science, 2016, 351(6275):867-871. [33] Hayes RP, Xiao Y, Ding F.Structural basis for promiscuous PAM recogition in type I-E Cascade from E. coli[J]. Nature, 2016, 530(7591):499-503. [34] Silas S, Mohr G, Sidote DJ, et al. Direct CRISPR spacer acquisition from RNA by a national reverse transcriptase-Cas1 fusion protein[J]. Science, 2016, 351(6276):aad4234. [35] Orthwein A, Noordermeer SM, Wilson MD, et al.A mechanism for the suppression of homologous recombination in G1 cells[J]. Nature, 2015, 528(7582):422-426. [36] Waltz E.Gene-edited CRISPR mushroom escapes US regulation[J]. Nature, 2016, 532(7599):293. [37] Tsai SQ, Nguyen NT, Malagon-Lopez J, et al.CIRCLE-seq:a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets[J]. Nature Methods, 2017, 14(6):607-614. [38] Cameron P, Fuller CK, Donohoue PD, et al.Mapping the genomic landscape of CRISPR-Cas9 cleavage[J]. Nature Methods, 2017, 14(6):600-606. [39] Rauch BJ, Silvis MR, Hultquist JF, et al.Inhibition of CRISPR-Cas9 with Bacteriophage Proteins[J]. Cell, 2016, 168(1):150-158. [40] Shing J, Jiang F, Liu JJ, et al.Disabling Cas9 by an anti-CRISPR DNA mimic[J]. Science Advances, 2017, 3(7):e1701620. [41] Kim D, Bae S, Park J, et al.Digenome-seq:genome-wide profiling of CRISPR/Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12(3):237-243. [42] Kim D, Kim S, Kim S, et al.Genome-wide target specifities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq[J]. Genome Res, 2016, 26(3):406-415. [43] Yang L, Güell M, Niu D, et al.Genome-wide inactivation of porcine endogenous retroviruses(PERVS)[J]. Science, 2015, 350 (6264):1101-1104. [44] Nelson CE, Hakim CH, Ousterout DG, et al.In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy[J]. Science, 2016, 351(6271):403-407. [45] Long C, Amoasii L, Mireault AA, et al.Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy[J]. Science, 2016, 351(6271):400-403. [46] Tabebordbar M, Zhu K, Cheng JK, et al.In vivo gene editing in dystrophic mouse muscle and muscle stem cells[J]. Science, 2016, 351(6271):407-411. [47] Traxler EA, Yao Y, Wang YD, et al.A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition[J]. Nature Medicine, 2016, 22 (9):987-990. [48] Zhu J, Ming C, Fu X, et al.Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors[J]. Cell Research, 2017, 27(6):830-833. [49] Zhen S, Hua L, Liu YH, et al.Harnessing the clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus[J]. Gene Therapy, 2015, 22(5):404-412. [50] Kaminski R, Bella R, Yin C, et al.Excision of HIV-1 DNA by gene edting:a proof-of-concept In vivo study[J]. Gene Therapy, 2016, 23(8-9):690-695. [51] Yin C, Zhang T, Qu X, et al.In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models[J]. Molecular Therapy, 2017, 25(5):1168-1186. [52] Paquet D, Kwart D, Chen A, et al.Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533(7601):125-129. [53] Black J, Adler A, Wang HG, et al.Targeted epigenetic remodeling of endogenous Loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells[J]. Cell Stem Cell, 2016, 19(3):406-414. [54] 当“魔剪”CRISPR遇上干细胞, 会撞出什么火花?[EB/OL]. http://med. sina. com/article_detail_103_1_28962. html, 2017. [55] Zeng H, Guo M, Zhou T, et al.An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery[J]. Cell Stem Cell, 2016, 19(3):326-340. [56] Brunger JM, Zutshi A, Willard VP, et al.Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs[J]. Stem Cell Reports, 2017, 8(5):1202-1213. [57] Suzuki K, Tsunekawa Y, Hernandezbenitez R, et al.In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631):144-149. [58] Xue Z, Hennelly S, Doyle B, et al.A G-Rich motif in the lncRNA braveheart, interacts with a zinc-finger transcription factor to specify the cardiovascular lineage[J]. Molecular Cell, 2016, 64(1):37-50. [59] Perli SD, Cui CH, Lu TK. Continuous genetic recording with self-targeting CRISPR-Cas in human cells[J]. Science, 2016, 353(6304):doi:10. 1126/science. aag0511. [60] Kotini AG, Chang CJ, Chow A, et al.Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia[J]. Cell Stem Cell, 2017, 20(3):315-328. [61] Wu J, Platero-Luengo A, Sakurai M, et al.Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3):473-486. [62] Yang J, Li J, Suzuki K, et al.Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding[J]. Cell Research, 2017, doi:10. 1038/cr. 2017. 86. [63] Chen SD, Sanjana NE, Zheng KJ, et al.Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis[J]. Cell, 2015, 160(6):1246-1260. [64] Guernet A, Mungamuri SK, Cartier D, et al.CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations[J]. Molecular Cell, 2016, 63(3):526-538. [65] Chen ZH, Yu YP, Zuo ZH, et al.Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene[J]. Nat Biotechnol, 2017, 35(6):543-550. [66] Roper J, Tammela T, Cetinbas NM, et al.In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis[J]. Nat Biotechnol, 2017, 35(6):569-576. [67] O'Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer[J]. Nat Biotechnol, 2017, 35(6):577-582. [68] Gao F, Shen XZ, Jiang F, et al.DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nat Biotechnol, 2016, 34(7):768-773. [69] Wu Z, Tan S, Xu L, et al.NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA[J]. Antiviral Research, 2017, 145:20-23. [70] Liang P, Xu Y, Zhang X, et al.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5):363-372. [71] Hockemeyer D, Jaenisch R.Induced pluripotent stem cells meet genome editing[J]. Cell Stem Cell, 2016, 18(5):573-586. [72] Wang F, Qi LS.Applications of CRISPR genome engineering in cell biology[J]. Trends in Cell Biology, 2016, 26(11):875-888. |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[3] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[4] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[5] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[6] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[7] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[8] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[9] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[10] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[11] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[12] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[13] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[14] | TANG Guang-fu, GUI Yan-ling, MAN Hai-qiao, ZHAO Jie-hong. Editing pyrG Gene of Monascus by CRISPR/Cas 9 and Its Effects on Secondary Metabolism [J]. Biotechnology Bulletin, 2022, 38(8): 198-205. |
[15] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 374
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||