[1] Scheidegger KA, Payne GA.Unlocking the secrets behind secondary metabolism:A review of Aspergillus flavus from pathogenicity to functional genomics[J]. Journal of Toxicology-Toxin Reviews, 2003, 22(2-3):423-459. [2] Amaike S, Keller NP.Aspergillus flavus[J]. Annu Rev Phytopathol, 2011, 49:107-133. [3] Steinbach WJ.Pediatric aspergillosis:disease and treatment differences in children[J]. Pediatr Infect Dis J, 2005, 24(4):358-364. [4] Fountain JC, Scully BT, Ni X, et al.Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production[J]. Front Microbiol, 2014, 5:40. [5] 罗自生, 秦雨, 徐艳群, 等. 黄曲霉毒素的生物合成、代谢和毒性研究进展[J]. 食品科学, 2015, 36(3):250-257. [6] 王后苗, 廖伯寿, 雷永, 等. 黄曲霉菌主要真菌毒素次级代谢与调控的研究进展[J]. 微生物学通报, 2014, 41(7):1425-1438. [7] 劳文艳, 林素珍. 黄曲霉毒素对食品的污染及危害[J]. 北京联合大学学报:自然科学版, 2011, 25(1):64-69. [8] Roze LV, Hong SY, Linz JE.Aflatoxin biosynthesis:current frontiers[J]. Annu Rev Food Sci Technol, 2013, 4:293-311. [9] 沈青山, 周威, 莫海珍, 等. 黄曲霉毒素污染控制的研究进展[J]. 食品科学, 2016, 37(09):237-243. [10] Cary JW, Harris-Coward PY, Ehrlich KC, et al.NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production[J]. Eukaryot Cell, 2012, 11(9):1104-1111. [11] Chang PK, Scharfenstein LL, Luo M, et al.Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid[J]. Toxins(Basel), 2011, 3(1):82-104. [12] 严海燕, 宗成志, 马国华, 等. 核糖体蛋白L41与黄曲霉抗性的关系[J]. 华北农学报, 2011, 26(6):16-19. [13] 郑怡. 核糖体蛋白L13与去乙酰化酶SirT1之间的关系及其生物学功能的研究[D]. 上海:华东师范大学, 2013. [14] Chang K, Georgianna D, Heber S, et al.Detection of alternative splice variants at the proteome level in Aspergillus flavus[J]. J Proteome Res, 2010, 9(3):1209-1217. [15] Georgianna DR, Hawkridge AM, Muddiman DC, et al.Temperature-dependent regulation of proteins in Aspergillus flavus:whole organism stable isotope labeling by amino acids[J]. J Proteome Res, 2008, 7(7):2973-2979. [16] Chang PK, Scharfenstein LL, Mack B, et al.Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis[J]. Appl Environ Microbiol, 2012, 78(21):7557-7563. [17] Livak KJ, Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4):402-408. [18] Calvo AM, Cary JW.Association of fungal secondary metabolism and sclerotial biology[J]. Front Microbiol, 2015, 6:62. [19] Zhang Y, Wolf GW, Bhat K, et al.Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway[J]. Mol Cell Biol, 2003, 23(23):8902-8912. [20] Zhang Y, Shi Y, Li X, et al.Inhibition of the p53-MDM2 interaction by adenovirus delivery of ribosomal protein L23 stabilizes p53 and induces cell cycle arrest and apoptosis in gastric cancer[J]. J Gene Med, 2010, 12(2):147-156. [21] Chen D, Zhang Z, Li M, et al.Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction:binding to MDM2, stabilization of p53 protein, and activation of p53 function[J]. Oncogene, 2007, 26(35):5029-5037. [22] Georgiou CD, Patsoukis N, Papapostolou I, et al.Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress[J]. Integr Comp Biol, 2006, 46(6):691-712. [23] Malhotra JD, Kaufman RJ.Endoplasmic reticulum stress and oxidative stress:a vicious cycle or a double-edged sword?[J]. Antioxid Redox Signal, 2007, 9(12):2277-2293. [24] Seshadri T, Uzman J, Oshima J, et al.Identification of a transcript that is down-regulated in senescent human fibroblasts. Cloning, sequence analysis, and regulation of the human L7 ribosomal protein gene[J]. J Biol Chem, 1993, 268(25):18474-18480. [25] 李红艳. 核糖体蛋白S3表达减少对果蝇发育的影响[J]. 重庆师范大学学报:自然科学版, 2014, 31(3):21-25. [26] Lu X, Chen J, Huang Z, et al.Influence of acute cadmium exposure on the liver proteome of a teleost fish, ayu(Plecoglossus altivelis)[J]. Mol Biol Rep, 2012, 39(3):2851-2859. |