Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 1-8.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1100
WU Yan1, HAO Ya-qiao1, 2, WEI Xuan1, 2, SHEN Qi1, LIU Ye-fei3, WANG Sheng-hou3, ZHAO Hong-xin1
Received:
2017-12-22
Online:
2018-05-26
Published:
2018-06-07
WU Yan, HAO Ya-qiao, WEI Xuan, SHEN Qi, LIU Ye-fei, WANG Sheng-hou, ZHAO Hong-xin. The Advantages and Limitations of CRISPR/Cas9-based Gene Editing Technology[J]. Biotechnology Bulletin, 2018, 34(5): 1-8.
[1] Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN,CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31:397-405. [2] Capecchi MR.Gene targeting in mice:functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6):507-512. [3] Carroll D.Genome engineering with targetable nucleases[J]. Annu Rev Biochem, 2014, 83:409-439. [4] Yu YJ, Bradley A.Engineering chromosomal rearrangements in mice[J]. Nat Rev Genet, 2001, 2(10):780-790. [5] Mussolino C, Cathomen T.RNA guides genome engineering[J]. Nat Biotechnol, 2013, 31(3):208-209. [6] Jiang W, Bikard D, Cox D, et al.Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat Biotechnol, 2013, 31:233-239. [7] DiCarlo JE, Norville JE, Mali P, et al. Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Res, 2013, 41:4336-4343. [8] Cobb RE, Wang Y, Zhao H.High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2014, 4(6):723-728. [9] Shan Q, Wang Y, Li J, et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31:686-688. [10] Wang Y, Li Z, Xu J, et al.The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori[J]. Cell Res, 2013, 23:1414-1416. [11] Yu Z, Ren M, Wang Z, et al.Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila[J]. Genetics, 2013, 195:289-291. [12] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339:819-823. [13] Mali P, Yang L, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339:823-826. [14] Zhang Q, Rho M, Tang H, et al.CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes[J]. Genome Biology, 2013, 14(4):1-15. [15] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide sequence of the lap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5249-5433. [16] Mojica FJ, Ferrer C, Juez G, et al.Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning[J]. Mol Microbiol, 1995, 17(1):85-93. [17] Coffey A, Ross RP.Bacteriophage-resistance systems in dairy starter strains, molecular analysis to application[J]. Anton Leeuw, 2002, 82(1):303-321. [18] Jansen R, Embden JDAV, Gaastra W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. [19] Bolotin A, Quinquis B, et al.Clustered regularly interspaced short palindrome repeats(CRISPRs)have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151:2551-2561. [20] Pourcel C, Salvignol G, Vergnaud G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151:654-663. [21] Mojica FJ, Díez-Villaseñor C, García-Martinez J, et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2):174-182. [22] Barrangou, R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315:1709-1712. [23] Sternberg SH, Haurwitz RE, Doudna JA.Mechanism of substrate selection by a highly specific CRISPR endoribonuclease[J]. RNA, 2012, 18(4):661-672. [24] Burstein D, Harrington LB, et al.New CRISPR-Cas syst-ems from uncultivated microbes[J]. Nature, 2017, 542(7640):237-241. [25] Grissa I, Vergnauud G, Pourcel C.The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8:172. [26] Sergey S, Abudayyeh OO, Makarova KS, et al.Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems[J]. Molecular Cell, 2015, 60(3):385. [27] Schunder E, Rydzewski K, Grunow R, et al.First indication for a functional CRISPR/Cas system in Francisella tularensis[J]. Int J Med Microbiol, 2013, 303(2):51-60. [28] Kweon J, Jang AH, Kim DE, et al.Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1[J]. Nat Commun, 2017, 8(1):1723. [29] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573. [30] Ran FA, Cong L, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186. [31] Gasiunas G, Barrangou R, Horvath P, et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39):E2579-2586. [32] Pougach K, Semenova E, Bogdanova E, et al.Transcription, processing and function of CRISPR cassettes in Escherichia coli[J]. Mol Microbiol, 2010, 77(6):1367-1379. [33] Sander JD, Joung JK.CRISPR-Cas systems for editing regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4):347-355. [34] Nishimasu H, Ran FA, Hsu PD, et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949. [35] Jinek M, Chylisnki K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [36] Matsu-ura T, Baek M, Kwon J, et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology, 2015, 2(1):1-7. [37] Fuller KK, Chen S, Loros JJ, et al.Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus[J]. Eukaryotic Cell, 2015, 14(11):1073-1080. [38] Wu Y, Hao Y, Wei X, et al.Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes[J]. Biotechnology for Biofuels, 2017, 10(1):248. [39] Feng C, Yuan J, Wang R, et al.Efficient targeted genome modification in maize using CRISPR/Cas9 system[J]. Journal of Genetics and Genomics, 2016, 43(1):37-43. [40] Zhang Y, Liang Z, Zong Y, et al.Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nat Commun, 2016, 7:12617. [41] Tian S, Jiang L, Gao Q, et al.Efficient CRISPR/Cas9-based gene knockout in watermelon[J]. Plant Cell Reports, 2016, 36:1-8. [42] Wu M, Wei C, Lian Z, et al.Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Sci Rep, 2016, 6:24360. [43] Lv Q, Yuan L, Deng J, et al.Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9[J]. Sci Rep, 2016, 6:25029. [44] Liu H, et al.TALEN-mediated gene mutagenesis in rhesus and cyn-omolgus monkeys[J]. Cell Stem Cell, 2014, 14(3):323-328. [45] Lu XJ, Xue HY, Ke ZP, et al.CRISPR-Cas9:a new and promising player in gene therapy[J]. Journal of Medical Genetics, 2015, 52(5):289-296. [46] Khalili K, Kaminski R, Gordon J, et al.Genome editing strategies:potential tools for eradicating HIV-1/AIDS[J]. Journal of Neurovirology, 2015, 21(3):310-321. [47] Maddalo D, Manchado E, Concepcion CP, et al.In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system[J]. Nature, 2015, 524(7566):502. [48] Xie F, Ye L, Chang JC, et al.Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac[J]. Genome Res, 2014, 24(9):1526. [49] Rong Z, Zhu S, Yang X, et al.Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template[J]. Protein & Cell, 2014, 5(4):258. [50] Kang Y, Zheng B, Shen B, et al.CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH[J]. Human Molecular Genetics, 2015, 24(25):7255-7264. [51] Qi L, Larson M, Gilbert L, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152:1173-1183. [52] Cho SW, Kim S, Kim JM, et al.Targeted genome enginerring in human cells with the Cas9 RNA-guide guided endounuclease[J]. Nat Biotechnol, 2013, 31:230-232. [53] Wang H, Yang H, Shivalila C, et al.One-step generation of mice carting mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153:910-918. [54] Hsu PD, Scott DA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31:827-832. [55] Pattanayak V, Lin S, Guilinger JP, et al.High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31:839-843. [56] Cho SW, Kim S, Kim Y, et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24:132-141. [57] Kim D, Bae S, Park J, et al.Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12(3):237-243. [58] Fu Y, Sander JD, Reyon D, et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32:279-284. [59] John GD, Nicolo F, Meagan S, et al.Optimized sgRNA design to maximize activity minimize off-target effects of CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34:184-191. [60] Frock RL, Hu J, Meyers R M, et al.Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases[J]. Nat Biotechnol, 2015, 33:179-186. [61] Qi L, Larson M, Gilbert L, et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. [62] Guilinger JP, Thompson DB, Liu DR.Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6):287-305. [63] Aouida M, Eid A, Ali Z, et al.Efficient fdCas9 synthetic endonuclease with improved specificity for precise genome engineering[J]. PLoS One, 2015, 10(7):e0133373. [64] Slaymaker IM, Gao L, Zetsche B, et al.Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351:84-88. [65] Ran FA, Cong L, Yan WX, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):202-204. [66] Müller M, Lee CM, Gasiunas G, et al.Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome[J]. Molecular Therapy, 2016, 24(3):636-644. [67] Lee CM, Cradick TJ, Gang B.The Neisseria meningitides CRISPR/Cas9 system enables specific genome editing in mammalian cells[J]. Molecular Therapy, 2016, 24(3):645-654. [68] Chu VT, Weber T, et al.Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells[J]. Nat Biotechnol, 2015, 33(5):543-548. [69] Maruyama T, Dougan SK, Truttmann MC, et al.Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nat Biotechnol, 2015, 33(5):538-542. [70] Lin S, Staahl B, Alla RK, et al.Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J]. Elife Science, 2014, 3(6):e04766-e04766. [71] Rong Z, Zhu S, Yang X, et al.Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template[J]. Protein & Cell, 2014, 5(4):258. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[11] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[12] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[13] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[14] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[15] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||