Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (4): 108-115.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0927
Previous Articles Next Articles
LI Jiang, GENG Li-zhao, XU Jian-ping
Received:
2018-10-30
Online:
2019-04-26
Published:
2019-05-05
LI Jiang, GENG Li-zhao, XU Jian-ping. Research Progress on Guide RNA in CRISPR/Cas9 System[J]. Biotechnology Bulletin, 2019, 35(4): 108-115.
[1] Wiedenheft B, Sternberg SH, Doudna JA.RNA-guided genetic silencing systems in bacteria and archaea[J]. Nat, 2012, 482:331-338. [2] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339:819-823. [3] Mali P, Yang LH, Esvelt KM, et al.RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339:823-826. [4] Barrangou R, Doudna JA.Applications of CRISPR technologies in research and beyond[J]. Nat Biotech, 2016, 34:933-941. [5] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337:816-821. [6] Miao J, Guo D, Zhang JZ, et al.Targeted mutagenesis in rice using CRISPR-Cas system[J]. Cell Res, 2013, 23:1233-1236. [7] Zhou HB, Liu B, Weeks DP, et al.Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research, 2014, 42:10903-10914. [8] Hsu PD, Scott DA, Weinsteinet JA, al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31:827-832. [9] Dang Y, Jia GX, Choi J, et al.Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency[J]. Genome Biology, 2015, 16:280-290. [10] Briner AE, Donohoue PD, Gomaa AA, et al.Guide RNA functional modules direct Cas9 activity and orthogonality[J]. Molecular Cell, 2014, 56:333-339. [11] Nishimasu H, Ran FA, Hsu PD, et al.Crystal structure of Cas9 in complex with guide rna and target DNA[J]. Cell, 2014, 156:935-949. [12] Jiang FG, Zhou KH, Ma LL, et al.A Cas9-guide RNA complex reorganized for target DNA recognition[J]. Science, 2015, 348:1477-1481. [13] Anders C, Niewoehner O, Duerst A, et al.Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nat, 2014, 513:569-573. [14] Hu XX, Meng XB, Liu Q, et al.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnol J, 2018, 16:292-297. [15] Weeks DP, Yang B.Progress in molecular biology and translational science[M]. New York:Academic Press, 2017. [16] Lowder LG, Zhang DW, Baltes N, et al.A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation[J]. Plant Physiol, 2015, 169:971-985. [17] Fu YF, Sander JD, Reyon D, et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotech, 2014, 32:279-284. [18] Durr J, Papareddy R, Nakajima K, et al.Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9[J]. Scientific Reports, 2018, 8:1-11. [19] Mikami M, Toki S, Endo M.In planta processing of the SpCas9-gRNA Complex[J]. Plant Cell Physiol, 2017, 58:1857-1867. [20] Wang M, Mao YF, Lu YM, et al.Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems[J]. Journal of Integrative Plant Biology, 2018, 60:626-631. [21] Ma XL, Zhang QY, Zhu QL, et al.A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8:1274-1284. [22] Tsai SQ, Wyvekens N, Khayter C, et al.Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotech, 2014, 32:569-576. [23] Čermák T, Curtin SJ, Gil-Humanes J, et al.A multipurpose toolkit to enable advanced genome engineering in plants[J]. Plant Cell, 2017, 29:1196-1217. [24] Qi WW, Zhu T, Tian ZR, et al.High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J]. BMC Biotechnology, 2016, 16:58-64. [25] Xie KB, Minkenberg B, Yang Y.Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proceedings of the National Academy of Sciences, 2015, 112:3570-3575. [26] Gao YB and Zhao YD. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J]. Journal of Integrative Plant Biology, 2014, 56:343-349. [27] Kim SJ, Kin D, Cho SW, et al.Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Research, 2014, 24:1012-1019. [28] Svitashev S, Schwartz C, Lenderts B, et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J]. Nat Commun, 2016, 7:1-7. [29] Kelley ML, Strezoska Z, He KZ, et al.Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing[J]. Journal of Biotechnology, 2016, 233:74-83. [30] Hamada H, Liu YL, Nagira Y, et al.Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat[J]. Scientific Reports, 2018, 8:1-7. [31] Kato-Inui T, Takahashi G, Hsu S, et al.Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair[J]. Nucleic Acids Research, 2018, 46:4677-4688. [32] Zhang JH, Adikaram P, Pandey M, et al.Optimization of genome editing through CRISPR-Cas9 engineering[J]. Bioengineered, 2016, 7:166-174. [33] Nielsen S, Yuzenkova Y, Zenkin N.Mechanism of eukaryotic RNA polymerase III transcription termination[J]. Science, 2013, 340:1577-1580. [34] Mekler V, Minakhin L, Semenova E, et al.Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA[J]. Nucleic Acids Research, 2016, 44:2837-2845. [35] Xu JY, Lian W, Jia YN, et al.Optimized guide RNA structure for genome editing via Cas9[J]. Oncotarget, 2017, 8:94166-94171. [36] Nahar S, Sehgal P, Azha M, et al.A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency[J]. Chemical Communications, 2018, 54:2377-2380. [37] Zhang F, LeBlanc C, Irish VF, et al. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter[J]. Plant Cell Rep, 2017, 36:1883-1887. [38] Canver MC, Lessard S, Pinello L, et al.Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci[J]. Nature Genetics, 2017, 49:625-634. [39] Tycko J, Myer VE and Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity[J]. Molecular Cell, 2016, 63:355-370. [40] Butt H, Eid A, Ali Z, et al.Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide rna molecule[J]. Frontiers in Plant Science, 2017, 8:1-8. [41] Burstein D, Harrington LB, Strutt SC, et al.New CRISPR-Cas systems from uncultivated microbes[J]. Nat, 2016, 542:237-243. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[5] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[6] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[8] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[9] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[10] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[11] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[12] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[13] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[14] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[15] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||