[1] Eulgem T, Rushton PJ, Robatzek S, et al.The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5):199-206. [2] Cristobal U, Assaf D, Tzion F, et al.A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803):1298-1301. [3] Gutterson N, Reuber TL.Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Curr Opin Plant Biol, 2004, 7(4):465-471. [4] Chen JQ, Meng XP, Yun Z, et al.Over-expression of OsDREB genes lead to enhanced drought tolerance in rice[J]. Biotechnol Lett, 2008, 30(12):2191-2198. [5] Guo Y, Gan S.AtNAP, a NAC family transcription factor, has an important role in leaf senescence[J]. Plant J, 2006, 46(4):601-612. [6] Lee MH, Jeon HS, Kim HG, et al.An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J]. New Phytol, 2017, 214(1):343-360. [7] Xu Z, Gongbuzhaxi, Wang C, et al.Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiol Biochem, 2015, 96(2015):356-363. [8] Liu F, Li X, Wang M, et al.Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnol J, 2018, 16(4):911-925. [9] Guo P, Li Z, Huang P, et al.A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence[J]. Plant Cell, 2017, 29(11):2854-2870. [10] Choi C, Hwang SH, Fang IR, et al.Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related(PR)10a promoter and confers reduced susceptibility to pathogens[J]. New Phytol, 2015, 20 8(3):846-859. [11] Ding ZJ, Yan JY, Xu XY, et al.Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis[J]. Plant J, 2014, 79(1):13-27. [12] Li L, He X, Zhao F, et al.WUS and PIN1-related genes undergo dynamic expressional change during organ regeneration in response to wounding in Zoysia japonica[J]. Mol Biol Rep, 2018, 45(6):1733-1744. [13] Jiading Y, Eric W, Michael U.A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves[J]. Plant Cell, 2014, 26(12):4862-4874. [14] Kewei Z, Susheng G.An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiol, 2012, 158(2):961-969. [15] Araujo NCP, Afonso R, Bringela A, et al.Peroxides with antiplasmodial activity inhibit proliferation of Perkinsus olseni, the causative agent of Perkinsosis in bivalves[J]. Parasitol Int, 2013, 62(6):575-582. [16] 郭运娜. MdNAC29基因在苹果干旱和盐胁迫中的作用和机制[D]. 沈阳:沈阳农业大学, 2018. [17] An JP, Li R, Qu FJ, et al.An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J]. J Plant Physiol, 2018, 221(2018):74-80. [18] Wu A, Allu AD, Garapati P, et al.JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis[J]. Plant Cell, 2012, 24(2):482-506. [19] Xie Q, Frugis G, Colgan D, et al.Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes Dev, 2000, 14(13):3024-3036. [20] Jin F, Hu L, Yuan D, et al.Comparative transcriptome analysis between somatic embryos(SEs)and zygotic embryos in cotton:evidence for stress response functions in SE development[J]. Plant Biotechnol J, 2014, 12(2):161-173. [21] Yi D, Alvim Kamei CL, Cools T, et al.The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7 regulate the DNA damage checkpoint in response to reactive oxygen species[J]. Plant Cell, 2014, 26(1):296-309. [22] Silke R, Somssich IE.Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16(9):1139-1149. [23] Rosenvasser S, Mayak S, Friedman H.Increase in reactive oxygen species(ROS)and in senescence-associated gene transcript(SAG)levels during dark-induced senescence of Pelargonium cuttings, and the effect of gibberellic acid[J]. Plant Sci, 2006, 170(4):873-879. [24] Skibbe M, Qu N, Galis I, et al.Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7):1984-2000. [25] Birkenbihl RP, Diezel C, Somssich IE.Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiol, 2012, 159(1):266-285. [26] Tsuneaki A, Guillaume T, Joulia P, et al.MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nat, 2002, 415(6875):977-983. [27] Hu Y, Dong Q, Yu D. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae[J]. Plant Science, 2012, 185-186(2012):288-297. [28] Moreau M, Degrave A, Vedel R, et al.EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):421-430. [29] Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, et al.Evidence for a positive regulatory role of strawberry(Fragariaxananassa)Fa WRKY1 and Arabidopsis AtWRKY75 proteins in resistance[J]. J Exp Bot, 2009, 60(11):3043-3065. [30] Xu X, Chen C, Fan B, et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5):1310-1326. |