Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (10): 25-33.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0716
Previous Articles Next Articles
DONG Ru, CAO Yang-rong
Received:
2019-08-12
Online:
2019-10-26
Published:
2019-09-30
DONG Ru, CAO Yang-rong. Research Progress on the Immune Regulation of Symbiotic Nitrogen Fixation Between Legumes and Rhizobia[J]. Biotechnology Bulletin, 2019, 35(10): 25-33.
[1] Dixon R, Kahn D.Genetic regulation of biological nitrogen fixation[J]. Nat Rev Microbiol, 2004, 2(8):621-631. [2] 王二涛. 植物-根瘤菌共生固氮[J]. 中国基础科学, 2016, 18(1):21-27. [3] Oldroyd GED, Downie JA.Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annu Rev Plant Biol, 2008, 59(1):519-546. [4] Oldroyd GED, Murray JD, Poole PS, et al.The rules of engagement in the legume-rhizobial symbiosis[J]. Annu Rev Genet, 2011, 45(1):119-144. [5] Broughton WJ, Perret X.Genealogy of legume-Rhizobium symbioses[J]. Curr Opin Plant Biol, 1999, 2(4):305-311. [6] Cao Y, Halane MK, Gassmann W, et al.The role of plant innate immunity in the legume-Rhizobium symbiosis[J]. Annu Rev Plant Biol, 2017, 68(1):535. [7] Wong JEMM, Nadzieja M, Madsen LH, et al.A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation[J]. Proc Natl Acad Sci USA, 2019, 116(28):14339-14348. [8] Ke D, Fang Q, Chen C, et al.The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus[J]. Plant Physiol, 2012, 159(1):131-143. [9] Duan L, Pei J, et al.A Dihydroflavonol-4-Reductase-Like protein interacts with NFR5 and regulates rhizobial infection in Lotus japo-nicus[J]. Mol Plant Microbe Interact, 2019, 32(4):401-412. [10] Morieri G, Martinez EA, Jarynowski A, et al.Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs[J]. New Phytol, 2013, 200(3):656-662. [11] Peiter E, Sun J, Heckmann AB, et al.The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling[J]. Plant Physiol, 2007, 145(1):192-203. [12] Singh S, Parniske M.Activation of calcium- and calmodulin-dependent protein kinase(CCaMK), the central regulator of plant root endosymbiosis[J]. Curr Opin Plant Biol, 2012, 15(4):444-453. [13] Singh S, Katzer K, Lambert J, et al.CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development[J]. Cell Host Microbe, 2014, 15(2):139-152. [14] Jin Y, Liu H, Luo D, et al.DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signaling pathways[J]. Nat Commun, 2016, 7:12433. [15] Brewin NJ.Development of the legume root nodule[J]. Annu Rev Cell Biol, 1991, 7:191-226. [16] Marsh JF, Rakocevic A, Mitra RM, et al.Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase[J]. Plant Physiol, 2007, 144(1):324-335. [17] Wang C, Yu H, et al.NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula[J]. New Phytol, 2016, 212(1):176-191. [18] Domonkos Á, Kovács S, Gombár A, et al.NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner[J]. Genes, 2017, 8(12):387. [19] Bourcy M, Brocard L, Pislariu CI, et al.Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions[J]. New Phytol, 2013, 197(4):1250-1261. [20] Hacquard S, Spaepen S, Garrido-Oter R, et al.Interplay between innate immunity and the plant microbiota[J]. Annu Rev Phytopathol, 2017, 4(55):565-589. [21] Yu X, Feng B, He P, et al.From chaos to harmony:responses and signaling upon microbial pattern recognition[J]. Annu Rev Phytopathol, 2017, 55(1):109-137. [22] Chinchilla D, Zipfel C, Robatzek S, et al.A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500. [23] Zipfel C, Kunze G, Chinchilla D, et al.Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-medi-ated transformation[J]. Cell, 2006, 125(4):749-60. [24] Hind SR, Strickler SR, Boyle PC, et al.Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system[J]. Nat Plants, 2016, 2(9):16128. [25] Lopez-Gomez M, Sandal N, Stougaard J, et al.Interplay of flg22-induced defence responses and nodulation in Lotus japonicus[J]. J Exp Bot, 2012, 63(1):393-401. [26] Willmann R, Lajunen HM, Erbs G, et al.Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection[J]. Proc Natl Acad Sci USA, 2011, 108(49):19824-19829. [27] Liu B, Li JF, Ao Y, et al.OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction[J]. Plant Signal Behav, 2013, 8(2):e22980. [28] Ranf S, Gisch N, Schäffer M, et al.A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana[J]. Nat Immunol, 2015, 16(4):426-433. [29] Desaki Y, Kouzai Y, Ninomiya Y, et al.OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice[J]. New Phytol, 2018, 217(3):1042-1049 . [30] Lagares A, Caetano-Anollés G, Niehaus K, et al.A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa[J]. J Bacteriol, 1992, 174(18):5941-52. [31] Cao Y, Liang Y, Tanaka K, et al.The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1[J]. ELife, 2014, 3:e03766. [32] Liu T, Liu Z, et al.Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336(6085):1160-1164. [33] D’Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of nodule development[J]. Glycobiology, 2002, 12(6):79R-105R. [34] Younes I, Rinaudo M.Chitin and chitosan preparation from marine sources. structure, properties and applications[J]. Mar Drugs, 2015, 13(3):1133-1174. [35] Amor BB, Shaw SL, Oldroyd GED, et al.The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation[J]. Plant J, 2003, 34(4):495-506. [36] Limpens E, Franken C, Smit P, et al.LysM domain receptor kinases regulating rhizobial Nod factor-induced infection[J]. Science, 2003, 302(5645):630-633. [37] Madsen EB, Madsen LH, Radutoiu S, et al.A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals[J]. Nature, 2003, 425(6958):637-640. [38] Radutoiu S, Madsen LH, Madsen EB, et al.Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases[J]. Nature, 2003, 425(6958):585-592. [39] Smit P, Limpens E, Geurts R, et al.Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling[J]. Plant Physiol, 2007, 145(1):183-191. [40] Pietraszewska-Bogiel A, Lefebvre B, Koini MA, et al.Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses[J]. PLoS One, 2013, 8(6):e65055. [41] Liang Y, Cao Y, Tanaka K, et al.Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response[J]. Science, 2013, 341(6152):1384-1387. [42] Skorupska A, Janczarek M, Marczak M, et al.Rhizobial exopolysaccharides:genetic control and symbiotic functions[J]. Microb Cell Fact, 2006, 5(1):7. [43] Kawaharada Y, Nielsen MW, et al.Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial coloniza-tion of root nodule primordia[J]. Nat Commun, 2017, 8:14534. [44] Sun Y, Li L, Macho AP, et al.Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158):624-628. [45] Shimizu T, Nakano T, Takamizawa D, et al.Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. Plant J, 2010, 64(2):204-214. [46] Boller T and Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annu Rev Plant Biol, 2009, 60(1):379-406. [47] Jones JD, Dangl JL.The plant immune system[J]. Nature, 2006, 444(7117):323-329. [48] Flor HH.Current Status of the Gene-For-Gene Concept[J]. Annu Rev Phytopathol, 2003, 9(1):275-296. [49] Jia Y, Mcadams SA, Bryan GT, et al.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. EMBO J, 2014, 19(15):4004-4014. [50] Dangl JL, Mcdowell JM.Two modes of pathogen recognition by plants[J]. Proc Natl Acad Sci USA, 2006, 103(23):8575-8576. [51] Mackey D, Holt BF, Wiig A, et al.RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis[J]. Cell, 2002, 108(6):743-754. [52] Ade J, Deyoung BJ, Golstein C, et al.Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease[J]. Proc Natl Acad Sci USA, 2007, 104(7):2531-2536. [53] Shao F, Golstein C, Ade J, et al.Cleavage of Arabidopsis PBS1 by a bacterial type III effector[J]. Science, 2003, 301(5637):1230-1233. [54] Nelson MS, Sadowsky MJ.Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes[J]. Front Plant Sci, 2015, 6:491. [55] Guan SH, Gris C, Cruveiller S, et al.Experimental evolution of nodule intracellular infection in legume symbionts[J]. ISME J, 2013, 7:1367-1377. [56] Marie C, Broughton WJ, Deakin WJ.Rhizobium type III secretion systems:legume charmers or alarmers[J]. Curr Opin Plant Biol, 2001, 4(4):336-342. [57] Xin DW, Liao S, Xie ZP, et al.Functional analysis of NopM, a novel E3 ubiquitin ligase(NEL)domain effector of Rhizobium sp. strain NGR234[J]. PLoS Pathog, 2012, 8(5):e1002707. [58] Bartsev AV, Boukli NM, Deakin WJ, et al.Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234[J]. FEBS Lett, 2003, 554(3):271-274. [59] Zhang L, Chen XJ, Lu HB, et al.Functional analysis of the Type 3 effector nodulation outer protein L(NopL)from Rhizobium sp. NGR234[J]. J Biol Chem, 2011, 286(37):32178-32187. [60] Bartsev AV, Deakin WJ, Boukli NM, et al.NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions[J]. Plant Physiol, 2004, 134(2):871-879. [61] Skorpil P, Saad MM, Boukli NM, et al.NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii[J]. Mol Microbiol, 2005, 57(5):1304-1317. [62] Dai WJ, Zeng Y, Xie ZP, et al.Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234[J]. J Bacteriol, 2008, 190(14):5101-5110. [63] Fotiadis CT, Dimou M, et al.Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum[J]. FEMS Microbiol Lett, 2012, 327(1):66-77. [64] Jiménez-Guerrero I, Pérez-Montaño F, Medina C, et al.NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium(Ensifer)fredii HH103[J]. PLoS One, 2015, 10(11):e0142866. [65] Miwa H, Okazaki S.How effectors promote beneficial interactions[J]. Curr Opin Plant Biol, 2017, 38:148-154. [66] Sprent JI.Evolving ideas of legume evolution and diversity:a taxonomic perspective on the occurrence of nodulation[J]. New Phytol, 2007, 174(1):11-25. [67] Hirsch A.Developmental biology of legume nodulation[J]. New Phytol, 1992, 122(2):211-237. [68] Timmers AC, Soupene E, Auriac MC, et al.Saprophytic intracellular rhizobia in alfalfa nodules[J]. Mol Plant Microbe Interact, 2000, 13(11):1204-1213. [69] Maunoury N, Kondorosi A, Kondorosi E, et al.Cell Biology Of Nodule Infection And Development[M]. Nitrogen-fixing Leguminous Symbioses. Springer Netherlands, 2008. [70] Mergaert P, Uchiumi T, Alunni B, et al.Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis[J]. Proc Natl Acad Sci USA, 2006, 103(13):5230-5235. [71] Mergaert P, Nikovics K, Kelemen Z, et al.A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs[J]. Plant Physiol, 2003, 132(1):161-173. [72] Haag AF, Baloban M, Sani M, et al.Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis[J]. PLoS Biol, 2011, 9(10):e1001169. [73] Berrabah F, Bourcy M, Eschstruth A, et al.A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis[J]. New Phytol, 2014, 203(4):1305-1314. [74] Sinharoy S, Torres-Jerez I, Bandyopadhyay K, et al.The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula[J]. Plant Cell, 2013, 25(9):3584-3601. [75] Yu HX, Xiao A, Dong R, et al.Suppression of innate immunity mediated by the CDPK-Rboh complex is required for rhizobial colonization in Medicago truncatula nodules[J]. New Phytol, 2018, 220(2):425-434. [76] Berrabah F, Salem EHA, Garmier M, et al.The multiple faces of the Medicago-Sinorhizobium symbiosis[J]. Methods Mol Biol, 2018, 1822:241-260. [77] Yu H, Bao H, Zhang Z, et al.Immune signaling pathway during terminal bacteroid differentiation in nodules[J]. Trends Plant Sci, 2019, 24(4):299-302. |
[1] | WANG Xiao-li, QIN Jie, WANG Min, WANG Li-xiang, DU Wei-jun. Isolation,Identification and Symbiotic Matching of Soybean Rhizobia from Shanxi Province [J]. Biotechnology Bulletin, 2022, 38(3): 59-68. |
[2] | ZHAGN Jing-jie, DUAN Lu-lu, CHENG Wei-lan, JI Chun-li, CUI Hong-li, LI Run-zhi. Algae-bacteria Symbiosis Increases Biomass and Oil Production of Chlorella emersonii [J]. Biotechnology Bulletin, 2019, 35(5): 76-84. |
[3] | JIAO Jian, LIU Ke-han, TIAN Chang-fu. Advances in Mechanisms and Regulation of Iron Uptake and Metabolism in Rhizobia [J]. Biotechnology Bulletin, 2019, 35(10): 7-17. |
[4] | KE Dan-xia, XU Qin-zhen, YANG Na, BAI Meng-yan, GUAN Yue-feng. Research Progresses on the Mechanism of High Nitrogen Inhibiting Nodulation and Nitrogen Fixation in Legumes [J]. Biotechnology Bulletin, 2019, 35(10): 40-45. |
[5] | LIN Li, LI Yang-rui, AN Qian-li. Biological Nitrogen Fixation in Association with Sugarcane:Retrospect and Prospect [J]. Biotechnology Bulletin, 2019, 35(10): 46-56. |
[6] | Li Zheng, Shan Huihui, Qi Yalin, Liu Lei, Han Suzhen. Diversity and Phylogeny of Rhizobium Isolated from Root Nodules of Legumes in Jiuquan and Other Regions,Gansu [J]. Biotechnology Bulletin, 2014, 0(10): 188-195. |
[7] | Shan Huihui, Li Zheng, Han Suzhen . The Determination of the Taxonomic Status of Two Soil Rhizobia from Southern Tibet [J]. Biotechnology Bulletin, 2013, 0(4): 158-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||