Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 188-198.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0377
Previous Articles Next Articles
SUN Kai(), CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan
Received:
2020-04-03
Online:
2020-12-26
Published:
2020-12-22
SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase[J]. Biotechnology Bulletin, 2020, 36(12): 188-198.
漆酶来源 | 反应条件 | 去除效率 | 主要中间产物 | 参考文献 |
---|---|---|---|---|
绒毛栓菌 (Trametes pubescens) | 87.6 μmol/L BPA,1.5 U/mL漆酶(固定在海藻酸钙),pH 5.0,30℃,反应2 h | > 99% | 未检测 | [14] |
硬毛粗毛盖孔菌 (Funalia trogii) | 0.22 mmol/L BPA,23.4 U漆酶,pH 5.5,40℃,反应1 h | 100% | 烯丙基苯酚、甲氧基苯酚和开环产物 | [35] |
糙皮侧耳 (Pleurotus ostreatus) | 0.88 mmol/L BPA,8 U/L漆酶,pH 5.0,28℃,反应1 h | 85% | 芳香族和脂肪族代谢产物 | [36] |
粗毛革孔菌 (Coriolopsis gallica) | 43.8 μmol/L BPA,1 U/mL漆酶,1 mmol/L HBT,pH 5.0,45℃,反应 2 h | 85% | 羧酸衍生物 | [38] |
长绒毛栓菌 (Trametes villosa) | 2.2 mmol/L BPA,1.5 U/mL漆酶,pH 6.0,60℃,反应3 h | 100% | 4-异丙基苯酚 | [39] |
变色栓菌 (Trametes versicolor) | 1 mmol/L BPA,每克载体含0.3 mg漆酶(固定在聚丙烯腈),pH 5.0,25℃,反应100 min | 100% | 未检测 | [40] |
血红密孔菌 (Pycnoporus sanguineus) | 87.6 μmol/L BPA,0.62 U/mL漆酶(固定在陶瓷载体),pH 5.0,25℃,反应9 h | 95% | 二聚体、低聚物和4-异丙基苯酚 | [41] |
变色栓菌 (Trametes versicolor) | 87.6 μmol/L BPA,0.12 U/mL漆酶,pH 6.0,30℃,反应3 h | > 95% | 大分子聚合物 | [42] |
长绒毛栓菌 (Trametes villosa) | 2.2 mmol/L BPA,1.48 U/mL漆酶,pH 6.0,室温,反应4 d | - | 二聚体、三聚体、四聚体、五聚体和六聚体 | [43] |
变色栓菌 (Trametes versicolor) | 43.8 μmol/L BPA,1.0 U/mL漆酶,pH 6.0,24℃,反应8 h | 96% | 二聚体、三聚体和4-异丙基苯酚 | [44] |
漆酶来源 | 反应条件 | 去除效率 | 主要中间产物 | 参考文献 |
---|---|---|---|---|
绒毛栓菌 (Trametes pubescens) | 87.6 μmol/L BPA,1.5 U/mL漆酶(固定在海藻酸钙),pH 5.0,30℃,反应2 h | > 99% | 未检测 | [14] |
硬毛粗毛盖孔菌 (Funalia trogii) | 0.22 mmol/L BPA,23.4 U漆酶,pH 5.5,40℃,反应1 h | 100% | 烯丙基苯酚、甲氧基苯酚和开环产物 | [35] |
糙皮侧耳 (Pleurotus ostreatus) | 0.88 mmol/L BPA,8 U/L漆酶,pH 5.0,28℃,反应1 h | 85% | 芳香族和脂肪族代谢产物 | [36] |
粗毛革孔菌 (Coriolopsis gallica) | 43.8 μmol/L BPA,1 U/mL漆酶,1 mmol/L HBT,pH 5.0,45℃,反应 2 h | 85% | 羧酸衍生物 | [38] |
长绒毛栓菌 (Trametes villosa) | 2.2 mmol/L BPA,1.5 U/mL漆酶,pH 6.0,60℃,反应3 h | 100% | 4-异丙基苯酚 | [39] |
变色栓菌 (Trametes versicolor) | 1 mmol/L BPA,每克载体含0.3 mg漆酶(固定在聚丙烯腈),pH 5.0,25℃,反应100 min | 100% | 未检测 | [40] |
血红密孔菌 (Pycnoporus sanguineus) | 87.6 μmol/L BPA,0.62 U/mL漆酶(固定在陶瓷载体),pH 5.0,25℃,反应9 h | 95% | 二聚体、低聚物和4-异丙基苯酚 | [41] |
变色栓菌 (Trametes versicolor) | 87.6 μmol/L BPA,0.12 U/mL漆酶,pH 6.0,30℃,反应3 h | > 95% | 大分子聚合物 | [42] |
长绒毛栓菌 (Trametes villosa) | 2.2 mmol/L BPA,1.48 U/mL漆酶,pH 6.0,室温,反应4 d | - | 二聚体、三聚体、四聚体、五聚体和六聚体 | [43] |
变色栓菌 (Trametes versicolor) | 43.8 μmol/L BPA,1.0 U/mL漆酶,pH 6.0,24℃,反应8 h | 96% | 二聚体、三聚体和4-异丙基苯酚 | [44] |
[1] |
Sifakis S, Androutsopoulos VP, Tsatsakis AM, et al. Human exposure to endocrine disrupting chemicals:effects on the male and female reproductive systems[J]. Environmental Toxicology and Pharmacology, 2017,51:56-70.
URL pmid: 28292651 |
[2] |
Lv YZ, Yao L, Wang L, et al. Bioaccumulation, metabolism, and risk assessment of phenolic endocrine disrupting chemicals in specific tissues of wild fish[J]. Chemosphere, 2019,226:607-615.
doi: 10.1016/j.chemosphere.2019.03.187 URL pmid: 30954895 |
[3] |
Moreman J, Lee O, Trznadel M, et al. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae[J]. Environ Sci Technol, 2017,51(21):12796-12805.
URL pmid: 29016128 |
[4] |
Rees Clayton EM, Todd M, Dowd JB, et al. The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003-2006[J]. Environmental Health Perspectives, 2011,119(3):390-396.
URL pmid: 21062687 |
[5] |
Careghini A, Mastorgio AF, Saponaro S, et al. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food:a review[J]. Environ Sci Pollut Res Int, 2015,22(8):5711-5741.
URL pmid: 25548011 |
[6] |
Bhatnagar A, Anastopoulos I. Adsorptive removal of bisphenol A(BPA)from aqueous solution:a review[J]. Chemosphere, 2017,168:885-902.
URL pmid: 27839878 |
[7] |
Torres RA, Abdelmalek F, Combet E, et al. A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters[J]. Journal of Hazardous Materials, 2007,146(3):546-551.
doi: 10.1016/j.jhazmat.2007.04.056 URL pmid: 17532122 |
[8] | Ng J, Wang X, Sun DD. One-pot hydrothermal synjournal of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A[J]. Appl Catal B, 2011,110:260-272. |
[9] |
Garoma T, Matsumoto S. Ozonation of aqueous solution containing bisphenol A:effect of operational parameters[J]. Journal of Hazardous Materials, 2009,167(1-3):1185-1191.
URL pmid: 19264397 |
[10] |
Burgos-Castillo RC, Sirés I, Sillanpää M, et al. Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions[J]. Chemosphere, 2018,194:812-820.
doi: 10.1016/j.chemosphere.2017.12.014 URL pmid: 29268102 |
[11] |
Alturki AA, Tadkaew N, McDonald JA, et al. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications[J]. Journal of Membrane Science, 2010,365(1-2):206-215.
doi: 10.1016/j.memsci.2010.09.008 URL |
[12] |
Tsutsumi Y, Haneda T, Nishida T. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes[J]. Chemosphere, 2001,42(3):271-276.
doi: 10.1016/S0045-6535(00)00081-3 URL |
[13] |
Xu R, et al. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A[J]. Bioresour Technol, 2013,149:111-116.
doi: 10.1016/j.biortech.2013.09.030 URL pmid: 24096278 |
[14] |
Lassouane F, Aït-Amar H, Amrani S, et al. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions[J]. Bioresource Technology, 2019,271:360-367.
URL pmid: 30293031 |
[15] |
Kampmann M, Boll S, Kossuch J, et al. Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A[J]. Water Research, 2014,57:295-303.
doi: 10.1016/j.watres.2014.03.054 URL pmid: 24727498 |
[16] | 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018,34(4):24-34. |
Gong R, Sun K, Xie DY. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018,34(4):24-34. | |
[17] | Senthivelan T, Kanagaraj J, Panda RC. Recent trends in fungal laccase for various industrial applications:an eco-friendly approach-a review[J]. Biotechnology and Bioprocess Engineering, 2016,21(1):19-38. |
[18] | 孙凯, 程行, 余家琳, 等. 漆酶催化生物体内有机物合成与分解代谢的双功能机制及其在生物技术领域中的应用[J]. 农业环境科学学报, 2019,38(6):1202-1210. |
Sun K, Cheng X, Yu JL, et al. Laccase-catalyzed anabolism and catabolism of organics in in-vivo:Bifunctional mechanisms and applications in biotechnological areas[J]. Journal of Agro-Environment Science, 2019,38(6):1202-1210. | |
[19] |
Bilal M, Adeel M, Rasheed T, et al. Emerging contaminants of high concern and their enzyme-assisted biodegradation-a review[J]. Environment International, 2019,124:336-353.
doi: 10.1016/j.envint.2019.01.011 URL pmid: 30660847 |
[20] | Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, et al. Emergent contaminants:endocrine disruptors and their laccase-assisted degradation-a review[J]. Science of the Total Environment, 2018,612:1516-1531. |
[21] | Nomiri S, Hoshyar R, Ambrosino C, et al. A mini review of bisphenol A(BPA)effects on cancer-related cellular signaling pathways[J]. Environ Sci Pollut Res, 2019,26(9):8459-8467. |
[22] |
Xiao C, Wang L, Zhou Q, et al. Hazards of bisphenol A(BPA)exposure:a systematic review of plant toxicology studies[J]. Journal of Hazardous Materials, 2020,384:121488.
URL pmid: 31699483 |
[23] | Vandenberg LN, Hauser R, Marcus M, et al. Human exposure to bisphenol A(BPA)[J]. Reprod Toxicol, 2007,2:139-177. |
[24] |
Huang YQ, Wong CKC, Zheng JS, et al. Bisphenol A(BPA)in China:a review of sources, environmental levels, and potential human health impacts[J]. Environ Int, 2012,42:91-99.
URL pmid: 21596439 |
[25] |
Tratnik JS, Kosjek T, Heath E, et al. Urinary bisphenol A in children, mothers and fathers from Slovenia:overall results and determinants of exposure[J]. Environ Res, 2019,168:32-40.
URL pmid: 30253314 |
[26] |
Song S, Duan Y, Zhang T, et al. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China:associations with fasting blood glucose[J]. Ecotoxicol Environ Saf, 2019,169:822-828.
URL pmid: 30597781 |
[27] | 任文娟, 汪贞, 王蕾, 等. 双酚A及其类似物对斑马鱼胚胎及幼鱼的毒性效应[J]. 生态毒理学报, 2017(1):184-192. |
Ren W, Wang Z, Wang L, et al. Effects of bisphenol A and its analogues on zebrafish embryos and larvae[J]. Asian Journal of Ecotoxicology, 2017(1):184-192. | |
[28] | Li Y, Duan F, Yang F, et al. Pubertal exposure to bisphenol A affects the reproduction of male mice and sex ratio of offspring[J]. J Reprod Contracept, 2015,26(1):14-21. |
[29] | Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A[J]. Brain Behavior Immunity, 2011,25(6):1084-1093. |
[30] |
Meeker JD, Ehrlich S, Toth TL, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic[J]. Reprod Toxicol, 2010,30(4):532-539.
doi: 10.1016/j.reprotox.2010.07.005 URL pmid: 20656017 |
[31] |
Duan Y, Yao Y, Wang B, et al. Association of urinary concentrations of bisphenols with type 2 diabetes mellitus:a case-control study[J]. Environ Pollut, 2018,243:1719-1726.
doi: 10.1016/j.envpol.2018.09.093 URL pmid: 30408859 |
[32] |
Noszczyńska M, Piotrowska-Seget Z. Bisphenols:application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers[J]. Chemosphere, 2018,201:214-223.
doi: 10.1016/j.chemosphere.2018.02.179 URL pmid: 29524822 |
[33] |
Mate DM, Alcalde M. Laccase:a multi-purpose biocatalyst at the forefront of biotechnology[J]. Microbial Biotechnology, 2017,10(6):1457-1467.
doi: 10.1111/1751-7915.12422 URL pmid: 27696775 |
[34] |
Riva S. Laccases:blue enzymes for green chemistry[J]. Trends in Biotechnology, 2006,24(5):219-226.
doi: 10.1016/j.tibtech.2006.03.006 URL pmid: 16574262 |
[35] | Atacag Erkurt H. Biodegradation and detoxification of BPA:involving laccase and a mediator[J]. CLEAN-Soil, Air, Water, 2015,43(6):932-939. |
[36] | de Freitas EN, Bubna GA, Brugnari T, et al. Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products[J]. Chemical Engineering Journal, 2017,330:1361-1369. |
[37] | Morozova OV, Shumakovich GP, Shleev SV, et al. Laccase-mediator systems and their applications-a review[J]. Applied Biochemistry and Microbiology, 2007,43(5):523-535. |
[38] | Daâssi D, et al. Degradation of bisphenol A by different fungal laccases and identification of its degradation products[J]. Intern Biodeterior Biodegrad, 2016,110:181-188. |
[39] |
Fukuda T, Uchida H, Takashima Y, et al. Degradation of bisphenol A by purified laccase from Trametes villosa[J]. Biochemical and Biophysical Research Communications, 2001,284(3):704-706.
doi: 10.1006/bbrc.2001.5021 URL pmid: 11396959 |
[40] |
Nicolucci C, Rossi S, Menale C, et al. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads[J]. Biodegradation, 2011,22(3):673-683.
URL pmid: 21125313 |
[41] |
Barrios-Estrada C, de Jesús Rostro-Alanis M, Parra AL, et al. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation[J]. International Journal of Biological Macromolecules, 2018,108:837-844.
doi: 10.1016/j.ijbiomac.2017.10.177 URL pmid: 29101049 |
[42] | Escalona I, de Grooth J, Font J, et al. Removal of BPA by enzyme polymerization using NF membranes[J]. Journal of Membrane Science, 2014,468:192-201. |
[43] | Fukuda T, Uchida H, Suzuki M, et al. Transformation products of bisphenol A by a recombinant Trametes villosa laccase and their estrogenic activity[J]. J Chem Technol Biotechnol, 2004,79(11):1212-1218. |
[44] |
Arca-Ramos A, Eibes G, Feijoo G, et al. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents[J]. Applied Microbiology and Biotechnology, 2015,99(21):9299-9308.
URL pmid: 26209248 |
[45] |
Uchida H, Fukuda T, Miyamoto H, et al. Polymerization of bisphenol A by purified laccase from Trametes villosa[J]. Biochem Biophys Res Commun, 2001,287(2):355-358.
URL pmid: 11554734 |
[46] |
Chen M, Waigi MG, Li S, et al. Fungal laccase-mediated humification of estrogens in aquatic ecosystems[J]. Water Research, 2019,166:115040.
URL pmid: 31505307 |
[47] | Beck S, Berry E, Duke S, et al. Characterization of Trametes versicolor laccase-catalyzed degradation of estrogenic pollutants:substrate limitation and product identification[J]. International Biodeterioration & Biodegradation, 2018,127:146-159. |
[48] | Liu F, Liu Q, Zhang Y, et al. Molecularly imprinted nanofiber membranes enhanced biodegradation of trace bisphenol A by Pseudomonas aeruginosa[J]. Chem Eng J, 2015,262:989-998. |
[49] | Zheng X, Wang Q, Jiang Y, et al. Biomimetic synjournal of magnetic composite particles for laccase immobilization[J]. Industrial & Engineering Chemistry Research, 2012,51(30):10140-10146. |
[50] |
Ba S, Arsenault A, Hassani T, et al. Laccase immobilization and insolubilization:from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment[J]. Crit Rev Biotechnol, 2013,33(4):404-418.
doi: 10.3109/07388551.2012.725390 URL pmid: 23051065 |
[51] | 吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质, 生产, 纯化及固定化研究进展[J]. 生物技术通报, 2019,35(9):1-10. |
Wu Y, Ma HF, Cao YJ, et al. Advances on properties, production, purification and immobilization of fungal laccase[J]. Biotechnology Bulletin, 2019,35(9):1-10. | |
[52] | Rani M, Shanker U, Chaurasia AK. Catalytic potential of laccase immobilized on transition metal oxides nanomaterials:degradation of alizarin red S dye[J]. Journal of Environmental Chemical Engineering, 2017,5(3):2730-2739. |
[53] | Kashefi S, Borghei SM, Mahmoodi NM. Covalently immobilized laccase onto graphene oxide nanosheets:Preparation, characterization, and biodegradation of azo dyes in colored wastewater[J]. J Mol Liq, 2019,276:153-162. |
[54] | Fortes CCS, Daniel-da-Silva AL, Xavier AMRB, et al. Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions[J]. Chemical Engineering and Processing:Process Intensification, 2017,117:1-8. |
[55] |
Fu M, Xing J, Ge Z. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A[J]. Sci Total Environ, 2019,651:2857-2865.
URL pmid: 30463138 |
[56] |
Nguyen LN, Hai FI, Dosseto A, et al. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor[J]. Bioresource Technology, 2016,210:108-116.
URL pmid: 26803903 |
[57] |
Taghizadeh T, Talebian-Kiakalaieh A, Jahandar H, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020,386:121950.
doi: 10.1016/j.jhazmat.2019.121950 URL pmid: 31881496 |
[58] |
Zheng F, Cui BK, Wu XJ, et al. Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes[J]. Int Biodeterior Biodegradation, 2016,110:69-78.
doi: 10.1016/j.ibiod.2016.03.004 URL |
[59] |
曾涵, 尹筱莉, 杨忠丽, 等. 漆酶在纳米金溶胶/多重壁碳纳米管复合载体上固定方法的比较及粒子尺寸效应[J]. 应用化学, 2010,27(7):829-835.
doi: 10.3724/SP.J.1095.2010.90433 URL |
Zeng H, Yin XL, Yang ZL, et al. Immobilization approaches of laccase on nanogold sol/multi-walled carbon nanotube matrices and the particle size effects[J]. Chinese Journal of Applied Chemistry, 2010,27(7):829-835. | |
[60] |
张群, 张育淇, 刘晓贞, 等. 大尺寸SiO2大孔材料固定化漆酶[J]. 无机化学学报, 2013,29(10):2065-2070.
doi: 10.3969/j.issn.1001-4861.2013.00.324 URL |
Zhang Q, Zhang YQ, Liu XZ, et al. Immobilization of laccase on large-sized SiO2 macroporous materials[J]. Chinese Journal of Inorganic Chemistry, 2013,29(10):2065-2070. | |
[61] |
Fernández-Fernández M, Sanromán MÁ, Moldes D. Recent developments and applications of immobilized laccase[J]. Biotechnology Advances, 2013,31(8):1808-1825.
URL pmid: 22398306 |
[62] |
Alver E, Metin AÜ. Chitosan based metal-chelated copolymer nanoparticles:laccase immobilization and phenol degradation studies[J]. Int Biodeterior Biodegradation, 2017,125:235-242.
doi: 10.1016/j.ibiod.2017.07.012 URL |
[63] |
Xia TT, Liu CZ, Hu JH, et al. Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine[J]. Chem Eng J, 2016,295:201-206.
doi: 10.1016/j.cej.2016.03.044 URL |
[64] |
Titirici MM, White RJ, Brun N, et al. Sustainable carbon materials[J]. Chem Society Reviews, 2015,44(1):250-290.
doi: 10.1039/C4CS00232F URL |
[65] |
Chen J, Leng J, Yang X, et al. Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes[J]. Molecules, 2017,22(2):221.
doi: 10.3390/molecules22020221 URL |
[66] |
Lou C, Jing T, Tian J, et al. 3-Dimensional graphene/Cu/Fe3O4 composites:immobilized laccase electrodes for detecting bisphenol A[J]. J Mater Res, 2019,34(17):2964-2975.
doi: 10.1557/jmr.2019.248 URL |
[67] | Mohamad NR, Buang NA, Mahat NA, et al. Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate[J]. J Ind Eng Chem, 2015,32:99-108. |
[68] | 刘莉, 黄冬群, 鹿毅. 固定化漆酶磁性纳米材料的合成及对合成染料的降解[J]. 环境工程, 2017,35(3):38-42. |
Liu L, Huang DQ, Lu Y. Preparation of immobilized laccase magnetic nanoparticles for degradation of synthetic dyes[J]. Environmental Engineering, 2017,35(3):38-42. | |
[69] |
Ulu A, Birhanli E, Boran F, et al. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes[J]. International Journal of Biological Macromolecules, 2020,150:871-884.
doi: 10.1016/j.ijbiomac.2020.02.006 URL pmid: 32027899 |
[70] | 欧阳科, 谢珊, 赵雅, 等. 磁性Fe3O4/石墨烯异质结固定漆酶特性及其对水中双酚A的降解研究[J]. 生态环境学报, 2015,24(1):106-112. |
Ouyang K, Xie S, Zhao Y, et al. Catalytic capacity and enzymatic characteristics of immobilized laccase on magnetic Fe3O4/graphene hybrids for bisphenol A degradation[J]. Ecology and Environmental Sciences, 2015,24(1):106-112. | |
[71] |
Sadeghzadeh S, Nejad ZG, Ghasemi S, et al. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute[J]. Bioresource Technology, 2020,306:123169.
doi: 10.1016/j.biortech.2020.123169 URL pmid: 32182473 |
[72] |
Zhai R, Chen X, Jin M, et al. Synjournal of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization[J]. Cellulose, 2019,26(15):8337-8349.
doi: 10.1007/s10570-019-02588-6 URL |
[73] | 邓寒梅, 邵可, 梁家豪, 等. 漆酶的来源及固定化漆酶载体研究进展[J]. 生物技术通报, 2017,33(6):10-15. |
Deng HM, Shao K, Liang JH, et al. Source of laccase and research progress on carriers for laccase immobilization[J]. Biotechnology Bulletin, 2017,33(6):10-15. | |
[74] | Wang F, Guo C, Yang L, et al. Magnetic mesoporous silica nanoparticles:fabrication and their laccase immobilization performance[J]. Bioresour Technol, 2010(23):8931-8935. |
[75] |
Koklukaya SZ, Sezer S, Aksoy S, et al. Polyacrylamide-based semi-interpenetrating networks for entrapment of laccase and their use in azo dye decolorization[J]. Biotechnology and Applied Biochemistry, 2016,63(5):699-707.
URL pmid: 26202850 |
[76] |
Asgher M, Noreen S, Bilal M. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers[J]. International Journal of Biological Macromolecules, 2017,95:54-62.
doi: 10.1016/j.ijbiomac.2016.11.012 URL pmid: 27825994 |
[77] |
Skoronski E, Fernandes M, Magalhães MLB, et al. Substrate specificity and enzyme recycling using chitosan immobilized laccase[J]. Molecules, 2014,19(10):16794-16809.
doi: 10.3390/molecules191016794 URL pmid: 25329872 |
[78] |
Lin J, Liu Y, Chen S, et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal[J]. Intern J Biol Macromol, 2016,84:189-199.
doi: 10.1016/j.ijbiomac.2015.12.013 URL |
[79] | Hou J, Dong G, Ye Y, et al. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane[J]. J Memb Sci, 2014,469:19-30. |
[80] |
Lloret L, Eibes G, Moreira MT, et al. Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products[J]. Environmental Science & Technology, 2013,47(9):4536-4543.
doi: 10.1021/es304783k URL pmid: 23544499 |
[81] |
Giorno L, Drioli E, Carvoli G, et al. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid[J]. Biotechnol Bioeng, 2001,72(1):77-84.
URL pmid: 11084597 |
[82] | Cao X, Luo J, Woodley JM, et al. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor[J]. Chemical Engineering Journal, 2018,336:315-324. |
[83] |
Nguyen LN, Hai FI, Price WE, et al. Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor[J]. Int Biodeterior Biodegradation, 2014,95:25-32.
doi: 10.1016/j.ibiod.2014.05.017 URL |
[84] |
Lu N, Lu Y, Liu F, et al. H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A(BPA):kinetics, toxicity and degradation pathways[J]. Chemosphere, 2013(9):1266-1272.
doi: 10.1016/j.chemosphere.2008.10.049 URL pmid: 19101014 |
[85] | Han Q, Wang H, Dong W, et al. Degradation of bisphenol A by ferrate(VI)oxidation:kinetics, products and toxicity assessment[J]. Chem Eng J, 2015,262:34-40. |
[1] | YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal [J]. Biotechnology Bulletin, 2023, 39(7): 266-276. |
[2] | ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen [J]. Biotechnology Bulletin, 2023, 39(3): 301-310. |
[3] | WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria [J]. Biotechnology Bulletin, 2022, 38(7): 258-268. |
[4] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[5] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
[6] | WANG Lin SUI ,Chun-xiao,, WANG Jin. Research Progress on Phytoremediation of Wastewater Containing Bisphenol A [J]. Biotechnology Bulletin, 2016, 32(4): 63-67. |
[7] | Wang Shuo, Shi Wenxin, Wang Yan, Yu Shuili, Li Ji. Biological Wastewater Treatment at Low Temperatures:Advances and Future Trends [J]. Biotechnology Bulletin, 2015, 31(5): 48-53. |
[8] | Zhao Cuijuan, Song Wenjun, Zhu Gaoxiong, Wei Jiping, Li Bozhi, Zhang Jun. Development of Wastewater Treatment Using Ammoniadegrading Bacteria [J]. Biotechnology Bulletin, 2013, 0(2): 31-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||