Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (5): 48-53.doi: 10.13560/j.cnki.biotech.bull.1985.2015.05.008
Previous Articles Next Articles
Wang Shuo1,2, Shi Wenxin3, Wang Yan1, Yu Shuili3, Li Ji1
Received:
2014-09-19
Online:
2015-05-18
Published:
2015-05-18
Wang Shuo, Shi Wenxin, Wang Yan, Yu Shuili, Li Ji. Biological Wastewater Treatment at Low Temperatures:Advances and Future Trends[J]. Biotechnology Bulletin, 2015, 31(5): 48-53.
[1] 任南琪, 马放, 杨基先. 污染控制微生物学[M] . 哈尔滨:哈尔滨工业大学出版社, 2003. [2] 贲岳, 陈忠林, 徐贞贞. 低温生活污水处理系统中耐冷菌的筛选及动力学研究[J]. 环境科学, 2008, 29(11):3189-3193. [3] Uemura S, Harada H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J]. Bioresource Technology, 2000, 72(3):275-282. [4] 陈滢, 彭永臻. SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制[J]. 环境科学学报, 2005, 25(1):105-108. [5] 暴瑞玲. 低温条件下好氧颗粒污泥同步脱氮除磷效能及其过程研究[D] . 哈尔滨:哈尔滨工业大学, 2009. [6] Monsalvo VM, Mohedano AF, Casas JA. Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures[J]. Bioresource Technology, 2009, 100(20):4572-4578. [7] Tsuge J, Hiratsuka H, Kamimiya H. Glycosphingolipids as a possible signature of microbial communities in activated sludge and the potential contribution of fungi to wastewater treatment under cold conditions[J]. Bioscience Biotechnology Biochemistry, 2008, 72(10):2667-2674. [8] Delrue FR, Mande SC, Moyens S. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophillic bacteria[J]. Journal of Molecular Biology, 1993, 229(1):85-93. [9] Lenka V, Martin S, Radek S. Comparison of denitrification at low temperature using encapsulated Paracoccus denitrificans, pseudomonas fluorescens and mixed culture[J]. Bioresource Technology, 2011, 102(7):4661-4666. [10] Guo J, Peng Y, Huang H. Short-and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials, 2010, 179(1-3):471-479. [11] Li N, Ren N, Wang X. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process[J]. Bioresource Technology, 2010, 101(15):6265-6268. [12] Lopez-Vazquez CM, Christine M, van Loosdrecht MCM. Temperature effects on glycogen accumulating organisms[J]. Water Research, 2009, 43(11):2852-2864. [13] Lopez-Vazquez CM, Song Y, van Loosdrecht MCM. Temperature effects on the aerobic metabolism of glycogen accumulating organisms[J]. Biotechnology Bioengineering, 2008, 101(2):295-306. [14] Guo J, Wang J, Ma F. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures[J]. Bioresource Technology, 2010, 101(17):6622-6629. [15] Xu Z, Chen H, Wu H. 7 mT static magnetic exposure enhanced synthesis of poly-3-hydroxybutyrate by activated sludge at low temperature and high acetate concentration[J]. Process Safety and Environmental Protection, 2010, 88(4):292-296. [16] Guo W, Ren N. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed reactor[J]. International Journal Hydrogen Energy, 2008, 33(19):4981-4988. [17] Guo W, Ren N. Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation[J]. International Journal Hydrogen Energy, 2008, 33(24):7397-7404. [18] Li J, Li B, Zhu G. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor[J]. International Journal of Hydrogen Energy, 2007, 32(15):3274-3283. [19] Scully C, Collins G, O’Flaherty V. Anaerobic biological treatment of phenol at 9. 5-15 degrees in an expanded granular sludge bed-based bioreactor[J]. Water Research, 2006, 40(20):3737-3744. [20] Enright A, Collins G, O’Flaherty V. Effect of seed sludge and operation conditions on performance and archaeal community structure of low-temperature anaerobic solvent-degrading bioreactors[J]. System Applied Microbiology, 2009, 32(1):65-79. [21] Collins G, Foy C, O’Flaherty V. Anaerobic treatment of 2, 4, 6-trichlorophenol in an expanded granular sludge bed-anaerobic filter bioreactor[J]. FEMS Microbiology Ecology, 2005, 53(1):167-178. [22] Enright A, McHugh S, O’Flaherty V. Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater[J]. Water Research, 2005, 39(19):4587-4596. [23] Enright A, Collins G, O’Flaherty V. Low-temperature anaerobic biological treatment of toluene-containing wastewater[J]. Water Research, 2007, 41(7):1465-1472. [24] Siggins A, Enright A, O’Flaherty V. Low-temperature anaerobic treatment of a trichloroethylene-contaminated wastewater:microbial community development[J]. Water Research, 2011, 45(13):4035-4046. [25] Siggins A, Enright A, O’Flaherty V. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene-contaminated wastewater at 37 degree and 15 degree[J]. Water Research, 2011, 45(8):2452-2462. [26] Collins G, Mchugh S, O’Flaherty V. New low-temperature applications of anaerobic wastewater treatment[J]. Journal of Environmental Science and Health, Part A, 2007, 41(5):881-895. [27] Kalyuzhnyi SV, Marina A, Sklyar VI. One-and two-stage upflow anaerobic sludge-bed reactor pretreatment of winery wastewater at 4-10 degrees[J]. Applied Biochemistry and Biotechnology, 2001, 90(2):107-124. [28] Tsushima I, Yoochatchaval W, Yoshida H. Microbial community structure and population dynamics of granules developed in EGSB for the anaerobic treatment of low-strength wastewater at low temperature[J]. Journal of Environmental Science and Health, Part A, 2010, 45(6):754-766. [29] McKeown RM, Scully C, O’Flaherty V. Long-term low-temperature, anaerobic biotreatment of acidified wastewaters:bioprocess performance and physiological characteristics[J]. Water Research, 2009, 43(6):1611-1620. [30] 黄霞, 俞毓敏, 王蕾. 固定化细胞技术在废水处理中的应用[J]. 环境科学, 1993, 14(1):41-48. [31] Li G, Zhang Z. Anaerobic biological treatment of alginate production wastewaters in a pilot-scale expended granular sludge bed reactor under moderate to low temperatures[J]. Water Environment Research, 2010, 82(8):725-732. [32] Bassin JP, Kleerebezem R, van Loosdrecht MCM. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J]. Water Research, 2012, 46(12):3805-3816. [33] Bao R, Yu S, Zuo X. Shut-cut nitrification characteristics of aerobic granule in a sequencing batch airlift reactor at low temperature[J]. Journal of Harbin Institute of Technology, 2009, 16(4):570-575. [34] Winkler M, Kleerebezem R, van Loosdrecht MCM. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science Technology, 2011, 45(17):7330-7337. [35] Wang S, Shi W, Yu S. Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature[J]. Bioprocess and Biosystem Engineering, 2012, 35(7):1049-1055. [36] de Kreuk MK, Pronk M, van Loosdrecht MCM. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperature[J]. Water Research, 2005, 39(18):4476-4484. [37] Frijters CTMJ, Eikelboom DH, Mulder A. Treatment of municipal wastewater in a circox airlift reactor with integrated denitrification[J]. Water Science Technology, 1997, 36(1):173-181. [38] Bao R, Yu S, Shi W. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor at low temperature[J]. Journal of Hazardous Materials, 2009, 168(2-3):1334-1340. [39] Bao R, Yan X, Yu S. Performance of denitrifying phosphorus removal by aerobic granular sludge at low temperature[C] //2011 International Conference on Green Building, Materials and Civil Engineering, 2011:71-78:2966-2969. |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | YUAN Ye, ZHOU Jia, QU Jian-hang, ZHANG Bo-yuan, LUO Yu, LI Hai-feng. Screening of an Efficient Denitrifying Phosphorus-accumulating Bacterium and Its Denitrification and Phosphorus Removal [J]. Biotechnology Bulletin, 2023, 39(7): 266-276. |
[3] | JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(3): 232-242. |
[4] | ZHANG Yu-hong, DONG Xian-bo, LIU Xiang-yu, XU Jia-qi, XU Zi-ling. Isolation of a Novel Heterotrophic Nitrification-Aerobic Denitrification Bacterium Paracoccus sp. QD-19 and Its Characterization of Removing Nitrogen [J]. Biotechnology Bulletin, 2023, 39(3): 301-310. |
[5] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[6] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
[7] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[8] | WANG Ya-jun, SI Yun-mei. Screening and Degradation Characteristics of a CP-7 Strain of Dephosphorization Bacteria [J]. Biotechnology Bulletin, 2022, 38(7): 258-268. |
[9] | JIN Jiao-jiao, LIU Zi-gang, MI Wen-bo, XU Ming-xia, ZOU Ya, XU Chun-mei, ZHAO Cai-xia. Identification of Low Temperature Stress-responsive Genes Regulating Photosynthetic Characteristics in the Leaves of Brassica napus by RNA-Seq [J]. Biotechnology Bulletin, 2022, 38(4): 126-142. |
[10] | CUI Jie-bing, ZHANG Meng, ZHANG Ying-ting, XU Jin. Effects of Low Temperature Stress on Different Clones of Cryptomeria fortunei and Evaluation of Their Cold Resistance [J]. Biotechnology Bulletin, 2022, 38(3): 31-40. |
[11] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
[12] | LI Zhen-yang, JIANG Run, LIU Lin, LI Si-qi, WANG Xiao-hui. Screening of Low-temperature Heterotrophic Nitrifying Bacteria and Their Physiological and Biochemical Characteristics [J]. Biotechnology Bulletin, 2021, 37(10): 45-56. |
[13] | GAO Xing-ai, WANG Xin, XIE Jiao, WANG Fei-hu, GONG Yu-xuan, GUAN Fa-chun, LI Zhong-he. Research Progress on Low Temperature Straw-degrading Compound Microbial Agent [J]. Biotechnology Bulletin, 2020, 36(4): 144-150. |
[14] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[15] | LIU Chang-rong, ZHANG Feng-li, LI Zhi-yong. Immobilization of Marine Urease and Its Utilization in the Treatment of Urea Wastewater [J]. Biotechnology Bulletin, 2019, 35(9): 75-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||