Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 102-112.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0859
Previous Articles Next Articles
Received:
2020-07-13
Online:
2021-01-26
Published:
2021-01-15
Contact:
XIA Qiang
E-mail:whoziyuan@foxmail.com;xiaqiang1973@126.com
HU Zi-yuan, XIA Qiang. Advances in the Histology Study,Function and Application of Insect Intestinal Flora[J]. Biotechnology Bulletin, 2021, 37(1): 102-112.
组学类别 | 研究对象 | 研究内容 | 主要技术 | 昆虫肠道菌群研究应用 | 参考文献 |
---|---|---|---|---|---|
宏基因组学 | 特定环境中生物体的所有DNA | 通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息 | 实时荧光定量聚合酶链式反应(RT-qPCR)、16S rRNA测序技术、16S rDNA测序技术、高通量测序技术、序列分析法、同位素检测等 | 揭示昆虫肠道菌群的基因差异,寻找功能基因;发现未知肠道菌;鉴定菌群种类和丰富度;阐明肠道菌群种间关系 | [11-14] |
蛋白质组学 | 细胞、组织或生物体蛋白质 | 在大规模水平上同时研究一系列蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等。由此获得蛋白质水平上的关于疾病发生、细胞代谢等过程的整体而全面的认识 | 双向凝胶电泳技术(2-DE)、双向荧光差异凝胶电泳(DIGE)技术、质谱技术(MS)、同位素亲和标签技术(ICAT)、细胞培养条件下稳定同位素标记(SILAC)技术、蛋白质芯片、生物信息学等 | 揭示肠道菌群蛋白差异表达与肠道菌群功能关系,预测肠道菌群功能差异;阐明肠道菌群在生理或病理条件下的变化机制;分析肠道菌群功能与疾病的关系 | [15-17] |
代谢组学 | 生物体内所有代谢物 | 对某一生物或细胞在一特定生理时期内所有低分子量(相对分子量<1000)代谢产物同时进行定性和定量分析 | 核磁共振技术(NMR)、毛细管电泳质谱联用技术(EC-MS)、同位素标记质谱、气相色谱-质谱联用技术(GC-MS)、液相色谱-质谱联用技术(LC-MS)等 | 分析肠道菌群代谢产物种类和丰富度;评价昆虫肠道菌群的各种代谢活动;推测昆虫肠道菌群间的相互作用;解释肠道菌群在代谢方面对疾病发生和发展的影响 | [18-20] |
培养组学 | 所有离体微生物 | 尽可能地模仿细菌所处的自然环境,以获取培养物 | 传统培养法、基质辅助激光解吸电离飞行时间质谱法(MALDI-TOF)等 | 丰富肠道菌群中可培养细菌的种类;改变描述未知细菌的方法;发现肠道菌群中新菌种;发现肠道菌群多样化的培养条件和营养成分;提供活菌供因果验证 | [21-23] |
组学类别 | 研究对象 | 研究内容 | 主要技术 | 昆虫肠道菌群研究应用 | 参考文献 |
---|---|---|---|---|---|
宏基因组学 | 特定环境中生物体的所有DNA | 通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息 | 实时荧光定量聚合酶链式反应(RT-qPCR)、16S rRNA测序技术、16S rDNA测序技术、高通量测序技术、序列分析法、同位素检测等 | 揭示昆虫肠道菌群的基因差异,寻找功能基因;发现未知肠道菌;鉴定菌群种类和丰富度;阐明肠道菌群种间关系 | [11-14] |
蛋白质组学 | 细胞、组织或生物体蛋白质 | 在大规模水平上同时研究一系列蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等。由此获得蛋白质水平上的关于疾病发生、细胞代谢等过程的整体而全面的认识 | 双向凝胶电泳技术(2-DE)、双向荧光差异凝胶电泳(DIGE)技术、质谱技术(MS)、同位素亲和标签技术(ICAT)、细胞培养条件下稳定同位素标记(SILAC)技术、蛋白质芯片、生物信息学等 | 揭示肠道菌群蛋白差异表达与肠道菌群功能关系,预测肠道菌群功能差异;阐明肠道菌群在生理或病理条件下的变化机制;分析肠道菌群功能与疾病的关系 | [15-17] |
代谢组学 | 生物体内所有代谢物 | 对某一生物或细胞在一特定生理时期内所有低分子量(相对分子量<1000)代谢产物同时进行定性和定量分析 | 核磁共振技术(NMR)、毛细管电泳质谱联用技术(EC-MS)、同位素标记质谱、气相色谱-质谱联用技术(GC-MS)、液相色谱-质谱联用技术(LC-MS)等 | 分析肠道菌群代谢产物种类和丰富度;评价昆虫肠道菌群的各种代谢活动;推测昆虫肠道菌群间的相互作用;解释肠道菌群在代谢方面对疾病发生和发展的影响 | [18-20] |
培养组学 | 所有离体微生物 | 尽可能地模仿细菌所处的自然环境,以获取培养物 | 传统培养法、基质辅助激光解吸电离飞行时间质谱法(MALDI-TOF)等 | 丰富肠道菌群中可培养细菌的种类;改变描述未知细菌的方法;发现肠道菌群中新菌种;发现肠道菌群多样化的培养条件和营养成分;提供活菌供因果验证 | [21-23] |
[1] |
Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiology Reviews, 2013,37(5):699-735.
doi: 10.1111/1574-6976.12025 URL |
[2] |
Zheng H, Steele MI, Leonard SP, et al. Honey bees as models for gut microbiota research[J]. Lab Animal, 2018,47(11):317-325.
URL pmid: 30353179 |
[3] |
Douglas AE. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annual Review of Entomology, 2015,60:17-34.
doi: 10.1146/annurev-ento-010814-020822 URL |
[4] |
Onchuru TO, Javier Martinez A, Ingham CS, et al. Transmission of mutualistic bacteria in social and gregarious insects[J]. Current Opinion in Insect Science, 2018,28:50-58.
URL pmid: 30551767 |
[5] | Kwong WK, Moran NA. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016,14(6):374-384. |
[6] | 郭军, 吴杰, 邓先余, 等. 昆虫肠道菌群的功能研究进展[J]. 应用昆虫学报, 2015,52(6):1345-1352. |
Guo J, Wu J, Deng XY, et al. Advances in research on insect gut microbiota and their functions[J]. Chinese Bulletin of Entomology, 2015,52(6):1345-1352. | |
[7] | 吴晓露, 夏晓峰, 陈俊晖, 等. 取食不同食物对小菜蛾幼虫肠道细菌多样性的影响[J]. 昆虫学报, 2019,62(10):1172-1185. |
Wu XL, Xia XF, Chen JH, et al. Effects of different diets on the diversity of larval gut bacteria of the diamondback moth, Plutella xylostella(Lepidoptera:Plutellidae)[J]. Acta Entomologica Sinica, 2019,62(10):1172-1185. | |
[8] | Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees[J]. PLoS Biology, 2017,15(3):e2001861. |
[9] | Almeida LG, Moraes LA, Trigo JR, et al. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria:A potential source for biotechnological exploitation[J]. PLoS One, 2017,12(3):e0174754. |
[10] | Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease[J]. Genome Biology, 2017,18(1):83. |
[11] | 吴旧生, 王鹏歧, 刘月环. 宏基因组学与动物病原微生物检测[J]. 中国比较医学杂志, 2014,24(9):72-77. |
Wu JS, Wang PQ, Liu YH. Metagenome and detection of animal microbial pathogens[J]. Chinese Journal of Comparative Medicine, 2014,24(9):72-77. | |
[12] | 刘驰, 李家宝, 芮俊鹏, 等. 16S rRNA基因在微生物生态学中的应用[J]. 生态学报, 2015,35(9):2769-2788. |
Liu C, Li JB, Rui JP, et al. The applications of the 16S rRNA gene in microbial ecology:current situation and problems[J]. Acta Ecologica Sinica, 2015,35(9):2769-2788. | |
[13] | 王天召, 王正亮, 朱杭锋, 等. 基于高通量测序的褐飞虱肠道微生物多样性分析[J]. 昆虫学报, 2019,62(3):323-333. |
Wang TZ, Wang ZL, Zhu HF, et al. Analysis of the gut microbial diversity of the brown planthopper, Nilaparvata lugens(Hemip-tera:Delphacidae)by high-throughput sequencing[J]. Acta Entomologica Sinica, 2019,62(3):323-333. | |
[14] | Dong ZX, Li HY, Chen YF, et al. Colonization of the gut microbiota of honey bee(Apis mellifera)workers at different developmental stages[J]. Microbiological Research, 2020,231:126370. |
[15] | 杨波, 铁宝霞, 蔡小玲, 等. 肠道微生态研究方法及应用研究进展[J]. 广西医学, 2018,40(10):1219-1221. |
Yang B, Tie BX, Cai XL, et al. Intestinal microecology:a review of research techniques and application[J]. Guangxi Medical Journal, 2018,40(10):1219-1221. | |
[16] | 徐飏, 赵丹青. 蛋白质组学在子痫前期的研究综述[J]. 贵州医药, 2020,44(8):1202-1204. |
Xu Y, Zhao DQ. Review of proteomics in preeclampsia[J]. Guizhou Medical Journal, 2020,44(8):1202-1204. | |
[17] |
Ellegaard KM, Brochet S, Bonilla-Rosso G, et al. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5[J]. Molecular Ecology, 2019,28(9):2224-2237.
URL pmid: 30864192 |
[18] | Kong Y, Jiang B, Luo X. Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model[J]. Future Microbiology, 2018,13:1117-1128. |
[19] | Ran N, Pang Z, Gu Y, et al. An updated overview of metabolomic profile changes in chronic obstructive pulmonary disease[J]. Metabolites, 2019,9(6):111-130. |
[20] | Kelly RS, Dahlin A, Mcgeachie MJ, et al. Asthma metabolomics and the potential for integrative omics in research and the clinic[J]. Chest, 2017,151(2):262-277. |
[21] | 牛尚博, 蔡嘉裕, 韦金涛, 等. 人体肠道细菌的培养组学研究进展[J]. 生态科学, 2020,39(2):227-232. |
Niu SB, Cai JY, Wei JT, et al. Research progress in human gut bacteria culturomics[J]. Ecological Science, 2020,39(2):227-232. | |
[22] | 毕玉晶, 杨瑞馥. 肠道微生物群研究的测序与培养组学方法[J]. 中华炎性肠病杂志, 2019,3(3):189-193. |
Bi YJ, Yang RF. Sequencing and culturomics in gut microbiota research[J]. Chinese Journal of Inflammatory Bowel Diseases, 2019,3(3):189-193. | |
[23] | Tandina F, Almeras L, Kone AK, et al. Use of MALDI-TOF MS and culturomics to identify mosquitoes and their midgut microbiota[J]. Parasites & Vectors, 2016,9:495-505. |
[24] | 曹乐, 宁康. 昆虫肠道的宏基因组学:微生物大数据的新疆界[J]. 微生物学报, 2018,58(6):964-984. |
Cao L, Ning K. Metagenomics of insect gut:new borders of microbial big data[J]. Acta Microbiologica Sinica, 2018,58(6):964-984. | |
[25] |
Liu N, Li H, Chevrette MG, et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite[J]. The ISME Journal, 2019,13(1):104-117.
URL pmid: 30116044 |
[26] | Xia X, Gurr GM, Vasseur L, et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory[J]. Frontiers in Microbiology, 2017,8:663. |
[27] | 孔德康, 王红旗, 许洁, 等. 基因组学、蛋白质组学和代谢组学在微生物降解PAHs中的应用[J]. 生物技术通报, 2017,33(10):46-51. |
Kong DK, Wang HQ, Xu J, et al. Applications of genomics, proteomics and metabolomics in microbial degradation of PAHs[J]. Biotechnology Bulletin, 2017,33(10):46-51. | |
[28] |
Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria:digestion, detoxification, or essential nutrient provision?[J]. Microbiome, 2020,8:38.
URL pmid: 32178739 |
[29] | Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees[J]. Royal Society Open Science, 2017,4(2):170003. |
[30] | Aslam B, Basit M, Nisar MA, et al. Proteomics:technologies and their applications[J]. Journal of Chromatographic Science, 2017,55(2):182-196. |
[31] | 陈芊凝. 蛋白组学研究方法概述[J]. 价值工程, 2020,39(3):243-245. |
Chen QN. Overview of proteomics research methods[J]. Value Engineering, 2020,39(3):243-245. | |
[32] | 田菁, 王宇哲, 闫世雄, 等. 代谢组学技术发展及其在农业动植物研究中的应用[J]. 遗传, 2020,42(5):452-465. |
Tian J, Wang YZ, Yan SX, et al. Metabolomics technology and its applications in agricultural animal and plant research[J]. Hereditas, 2020,42(5):452-465. | |
[33] | Kalim S, Rhee EP. An overview of renal metabolomics[J]. Kidney International, 2017,91(1):61-69. |
[34] | 任向楠, 梁琼麟. 基于质谱分析的代谢组学研究进展[J]. 分析测试学报, 2017,36(2):161-169. |
Ren XN, Liang QL. Advance in metabolomics based on mass spectrometry[J]. Journal of Instrumental Analysis, 2017,36(2):161-169. | |
[35] |
Kesnerova L, Mars R, Ellegaard KM, et al. Disentangling metabolic functions of bacteria in the honey bee gut[J]. PLoS Biology, 2017,15(12):e2003467.
doi: 10.1371/journal.pbio.2003467 URL pmid: 29232373 |
[36] | Zheng H, Powell JE, Steele MI, et al. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(18):4775-4780. |
[37] |
Tokarz J, Haid M, Cecil A, et al. Endocrinology meets metabolomics:achievements, pitfalls, and challenges[J]. Trends in Endocrinology and Metabolism, 2017,28(10):705-721.
URL pmid: 28780001 |
[38] | Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, et al. Untargeted metabolomics strategies-challenges and emerging directions[J]. Journal of the American Society for Mass Spectrometry, 2016,27(12):1897-1905. |
[39] | Jung GT, Kim KP, Kim K. How to interpret and integrate multi-omics data at systems level[J]. Animal Cells and Systems, 2020,24(1):1-7. |
[40] | 毛曼菲, 岳思青, 赵美蓉. 基于多组学技术的农药致毒机制研究进展[J]. 农药学学报, 2019,21(5-6):823-830. |
Mao MF, Yue SQ, Zhao MR. Advances in pesticide poisoning mechanism based on multi-omics[J]. Chinese Journal of Pesticide Science, 2019,21(5-6):823-830. | |
[41] | Rothman JA, Leger L, Kirkwood JS, et al. Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation[J]. Applied and Environmental Microbiology, 2019,85(21):e01411-19. |
[42] | 王四宝, 曲爽. 昆虫共生菌及其在病虫害防控中的应用前景[J]. 中国科学院院刊, 2017,32(8):863-872. |
Wang SB, Qu S. Insect symbionts and their potential application in pest and vector-borne disease control[J]. Bulletin of Chinese Academy of Sciences, 2017,32(8):863-872. | |
[43] |
Cai Z, Yao Z, Li Y, et al. Intestinal probiotics restore the ecological fitness decline of Bactrocera dorsalis by irradiation[J]. Evolutionary Applications, 2018,11(10):1946-1963.
doi: 10.1111/eva.12698 URL pmid: 30459840 |
[44] |
Wong AC, Wang QP, Morimoto J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in drosophila[J]. Current Biology, 2017,27(15):2397-2404.
doi: 10.1016/j.cub.2017.07.022 URL pmid: 28756953 |
[45] | Yuval B. Symbiosis:gut bacteria manipulate host behaviour[J]. Current Biology, 2017,27(15):746-747. |
[46] | 曾令瑜, 李志红, 柳丽君. 昆虫免疫及五种重要入侵昆虫免疫机制研究进展[J]. 植物保护学报, 2019,46(1):6-16. |
Zeng LY, Li ZH, Liu LJ. Research progress in the immunity of insects and the immune mechanisms of five important invasive insects[J]. Journal of Plant Protection, 2019,46(1):6-16. | |
[47] |
Daisley BA, Trinder M, Mcdowell TW, et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with Lactobacilli in a Drosophila melanogaster insect model[J]. Applied and Environmental Microbiology, 2018,84(9):e02820-17.
doi: 10.1128/AEM.02820-17 URL pmid: 29475860 |
[48] |
Xia X, Sun B, Gurr GM, et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella(L.)[J]. Frontiers in Microbiology, 2018,9:25.
URL pmid: 29410659 |
[49] |
Meriggi N, Di Paola M, Vitali F, et al. Saccharomyces cerevisiae induces immune enhancing and shapes gut microbiota in social wasps[J]. Frontiers in Microbiology, 2019,10:2320.
doi: 10.3389/fmicb.2019.02320 URL pmid: 31681197 |
[50] | Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants[J]. Proceedings Biological Sciences, 2016,283(1831):20160312. |
[51] | Ruokolainen L, Ikonen S, Makkonen H, et al. Larval growth rate is associated with the composition of the gut microbiota in the glanville fritillary butterfly[J]. Oecologia, 2016,181(3):895-903. |
[52] | Whon TW, Shin NR, Jung MJ, et al. Conditionally pathogenic gut microbes promote larval growth by increasing redox-dependent fat storage in high-sugar diet-fed Drosophila[J]. Antioxidants & Redox Signaling, 2017,27(16):1361-1380. |
[53] | Paris L, Peghaire E, Moné A, et al. Honeybee gut microbiota dysbiosis in pesticideparasite co-exposures is mainly induced by Nosema ceranae[J]. Journal of Invertebrate Pathology, 2020,172:107348. |
[54] | Habineza P, Muhammad A, Ji T, et al. The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus(Olivier)(coleoptera:dryophthoridae)by modulating its nutritional metabolism[J]. Frontiers in Microbiology, 2019,10:1212. |
[55] | Solomon GM, Dodangoda H, Mccarthy-Walker T, et al. The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster[J]. Peerj, 2019,7:e8097. |
[56] | Fan X, Gaur U, Yang M. Intestinal homeostasis and longevity:drosophila gut feeling[J]. Advances in Experimental Medicine and Biology, 2018,1086:157-168. |
[57] | Clark RI, Salazar A, Yamada R, et al. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality[J]. Cell Reports, 2015,12(10):1656-1667. |
[58] | Anderson KE, Ricigliano VA, Mott BM, et al. The queen’s gut refines with age:longevity phenotypes in a social insect model[J]. Microbiome, 2018,6(1):108. |
[59] | Cardoso-Junior CaM, Guidugli-Lazzarini KR, Hartfelder K. DNA methylation affects the lifespan of honey bee(Apis mellifera L.)workers - Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function[J]. Insect Biochemistry and Molecular Biology, 2018,92:21-29. |
[60] | Maes PW, Rodrigues PA, Oliver R, et al. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee(Apis mellifera)[J]. Molecular Ecology, 2016,25(21):5439-5450. |
[61] | Blot N, Veillat L, Rouze R, et al. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota[J]. PLoS One, 2019,14(4):e0215466. |
[62] | Haloi K, Kalita MK, Nath R, et al. Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer(Lepidoptera:Saturniidae)[J]. Journal of Invertebrate Pathology, 2016,138:73-85. |
[63] | Raymann K, Bobay LM, Moran NA. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome[J]. Molecular Ecology, 2018,27(8):2057-2066. |
[64] | Pietri JE, Tiffany C, Liang D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest[J]. PLoS One, 2018,13(12):e0207985. |
[65] | Wei G, Lai Y, Wang G, et al. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(23):5994-5999. |
[66] | Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathogens, 2014,10(10):e1004398. |
[67] | Jiang W, Peng Y, Ye J, et al. Effects of the entomopathogenic fungus metarhizium anisopliae on the mortality and immune response of Locusta migratoria[J]. Insects, 2019,11(1):36. |
[68] | Wu SC, Cao ZS, Chang KM, et al. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila[J]. Nature Communications, 2017,8(1):24. |
[69] | Liu W, Li Y, Guo S, et al. Association between gut microbiota and diapause preparation in the cabbage beetle:a new perspective for studying insect diapause[J]. Scientific Reports, 2016,6:38900. |
[70] | Przemieniecki SW, Kosewska A, Ciesielski S, et al. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste[J]. Environmental Pollution, 2020,256:113265. |
[71] | 梅瀚杰, 胡文锋. 黑水虻对有害物质的降解作用研究进展[J]. 饲料工业, 2019,40(20):59-64. |
Mei HJ, Hu WF. A review of degradation of harmful substance by black soldier fly[J]. Feed Industry, 2019,40(20):59-64. | |
[72] | Cai M, Ma S, Hu R, et al. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota[J]. Environmental Pollution, 2018,242(Pt A):634-642. |
[73] | Cai M, Ma S, Hu R, et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora[J]. Environmental Microbiology, 2018,20(11):4051-4062. |
[74] | Li H, Wan Q, Zhang S, et al. Housefly larvae(Musca domestica)significantly accelerates degradation of monensin by altering the structure and abundance of the associated bacterial community[J]. Ecotoxicology and Environmental Safety, 2019,170:418-426. |
[75] | Lou Y, Ekaterina P, Yang SS, et al. Biodegradation of polyethylene and polystyrene by greater wax moth larvae(Galleria mellonella L.)and the effect of co-diet supplementation on the core gut microbiome[J]. Environmental Science & Technology, 2020,54(5):2821-2831. |
[76] | Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella[J]. Current Biology, 2017,27(8):R292-R293. |
[77] | Alberoni D, Baffoni L, Gaggia F, et al. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L.[J]. Beneficial Microbes, 2018,9(2):269-278. |
[78] | Lee CM, Kim SY, Song J, et al. Isolation and characterization of a halotolerant and protease-resistant alpha-galactosidase from the gut metagenome of Hermetia illucens[J]. Journal of Biotechnology, 2018,279:47-54. |
[79] | Lu YH, Jin LP, Kong LC, et al. Phytotoxic, antifungal and immunosuppressive metabolites from Aspergillus terreus QT122 isolated from the gut of dragonfly[J]. Current Microbiology, 2017,74(1):84-89. |
[1] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[2] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[3] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[4] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[5] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[6] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[7] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[8] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[9] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[10] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[11] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[12] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[13] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[14] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[15] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||