Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0192
Previous Articles Next Articles
LI Jun-lin1,2(), ZHANG Huan-chao2, NIE Wen-jing1, ZHANG Hai-yang1, WANG Xiang-yu1, GUO Hong-en1(), HAN Lei3()
Received:
2021-02-18
Online:
2021-10-26
Published:
2021-11-12
Contact:
GUO Hong-en,HAN Lei
E-mail:lijunlin517@163.com;guohongen163@163.com;hanlei1610@qq.com
LI Jun-lin, ZHANG Huan-chao, NIE Wen-jing, ZHANG Hai-yang, WANG Xiang-yu, GUO Hong-en, HAN Lei. Cloning and Expression Analysis of Outward Potassium Ion Channel Gene AmGORK Promoter from Ammopiptanthus mongolicus[J]. Biotechnology Bulletin, 2021, 37(10): 9-16.
序号Sequence No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | GP1-1 | GCCGAATTCCATTGGGGTGAAG |
2 | GP1-2 | ACGATGGACTCCAGTCCGGCCGTGGTGGATCCTCCAATCCAAC |
3 | GP1-3 | CTTCCTCCTCCGAATCATCGCT |
4 | GP2-1 | CTGGAGTCCATCGTAATCGTCGA |
5 | GP2-2 | ACGATGGACTCCAGTCCGGCCCAACTCCAGCTTGACTCAAGCAAC |
6 | GPP2-3 | CAACTTGAACAGGAGCTTGCTCG |
7 | LAD1-1 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)N(G/C/A)NNNGGAA |
8 | LAD1-2 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)N(G/C/T)NNNGGTT |
9 | LAD1-3 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)(G/C/A)N(G/C/A)NNNCCAA |
10 | LAD1-4 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)(G/A/T)N(G/C/T)NNNCGGT |
11 | AC1 | ACGATGGACTCCAGAG |
12 | AmGORK-pro-F | GGTACCGGCACTTTTTTTAACAAGGTGAATCAATG |
13 | AmGORK-pro-R | CCATGGGGCGATGCTCTTTGCCATTCTC |
14 | AmGORK-pro-F-375 | GGTACCCTCCGATCCTATTTTGGTATATCA |
15 | AmGORK-pro-F-856 | GGTACCCTGGGTTGCAGTCAGGATAATAC |
16 | AmGORK-pro-F-1245 | GGTACCGCTGATTCTTGAAGAATGGAG |
Table 1 Primer sequences used in the experiment
序号Sequence No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | GP1-1 | GCCGAATTCCATTGGGGTGAAG |
2 | GP1-2 | ACGATGGACTCCAGTCCGGCCGTGGTGGATCCTCCAATCCAAC |
3 | GP1-3 | CTTCCTCCTCCGAATCATCGCT |
4 | GP2-1 | CTGGAGTCCATCGTAATCGTCGA |
5 | GP2-2 | ACGATGGACTCCAGTCCGGCCCAACTCCAGCTTGACTCAAGCAAC |
6 | GPP2-3 | CAACTTGAACAGGAGCTTGCTCG |
7 | LAD1-1 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)N(G/C/A)NNNGGAA |
8 | LAD1-2 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)N(G/C/T)NNNGGTT |
9 | LAD1-3 | ACGATGGACTCCAGAGCGGCCGC(G/C/A)(G/C/A)N(G/C/A)NNNCCAA |
10 | LAD1-4 | ACGATGGACTCCAGAGCGGCCGC(G/C/T)(G/A/T)N(G/C/T)NNNCGGT |
11 | AC1 | ACGATGGACTCCAGAG |
12 | AmGORK-pro-F | GGTACCGGCACTTTTTTTAACAAGGTGAATCAATG |
13 | AmGORK-pro-R | CCATGGGGCGATGCTCTTTGCCATTCTC |
14 | AmGORK-pro-F-375 | GGTACCCTCCGATCCTATTTTGGTATATCA |
15 | AmGORK-pro-F-856 | GGTACCCTGGGTTGCAGTCAGGATAATAC |
16 | AmGORK-pro-F-1245 | GGTACCGCTGATTCTTGAAGAATGGAG |
Fig. 2 Amplification of AmGORK promoter sequence A:The first round amplified products while TAIL-PCR amplified AmGORK promoter sequence(1:250 bp marker. 2-5:Fragments amplified by four random primers). B:The second round products while TAIL-PCR amplified AmGORK promoter sequence(1:DL2000 marker. 2-5:Fragments amplified by four random primers). C:Amplification of full length AmGORK promoter sequence(1:DL2000 marker. 2 and 3:Promoter fragment of AmGORK)
基序名称Site name | 物种Species | 序列Sequence | 功能Function |
---|---|---|---|
AAAC-motif | 菠菜 Spinacia oleracea | CAATCAAAACCT | 光响应元件 Light-responsive element |
AACA-motif | 水稻 Oryza sativa | TAACAAACTCCA | 胚乳特异性表达 Involved in endosperm-specific expression |
ABRE | 拟南芥 A. thaliana | TACGTG | ABA响应顺式作用元件cis-acting element involved in the abscisic acid responses |
CAAT-box | 拟南芥 A. thaliana | GGCAAT | 启动子和增强子区域共有顺式作用元件Common cis-acting element in promoter and enhancer regions |
G-box | 金鱼草 Antirrhinum majus | CACGTA | 光反应中的顺式调节元件cis-acting regulatory element involved in light responses |
GAG-motif | 大麦 Hordeum vulgare | GGAGATG | 光响应元件的一部分 Part of a light-responsive element |
GARE-motif | 甘蓝 Brassica oleracea | AAACAGA | 赤霉素响应元件 Gibberellin-responsive element |
GCN4 | 水稻 O. sativa | TGAGTCA | 胚乳表达顺式调控元件 cis-regulatory element involved in endosperm expression |
HSE | 甘蓝 B. oleracea | AAAAAATTTC | 热响应顺式作用元件 cis-acting element involved in heat stress responses |
I-box | 豌豆 Pisum sativum | ATGATATGA | 光响应元件的一部分 Part of a light-responsive element |
LAMP-element | 菠菜 S. oleracea | CCTTATCCA | 光响应元件的一部分 Part of a light-responsive element |
LTR | 大麦 H. vulgare | CCGAAA | 低温响应顺式作用元件 cis-acting element involved in low-temperature responses |
MBS | 拟南芥 A. thaliana | TAACTG | 干旱诱导MYB结合位点 MYB binding site involved in drought-inducibility |
MRE | 荷兰芹 Petroselinum crispum | AACCTAA | MYB结合位点参与光响应 MYB binding site involved in light responses |
O2-site | 玉米 Zea mays | GATGACATGG | 玉米蛋白代谢调控顺式作用元件 cis-acting regulatory element involved in zein metabolism regulation |
Skn-1 motif | 水稻 Oryza sativa | GTCAT | 胚乳表达必需的顺式作用元件 cis-acting regulatory element required for endosperm expression |
Sp1 | 玉米 Zea mays | CC(G/A)CCC | 光响应元件 Light-responsive element |
TATA-box | 拟南芥 A. thaliana | TATA | 在转录开始前30 bp核心启动子元件 Core promoter element around -30 bp of transcription start |
TC-rich repeats | 烟草 Nicotiana tabacum | ATTTTCTCCA | 防御及胁迫响应顺式作用元件 cis-acting element involved in defense and stress responses |
TCT-motif | 拟南芥 A.s thaliana | TCTTAC | 光响应元件的一部分 Part of a light-responsive element |
circadian | 番茄 Lycopersicon esculentum | CAANNNNATC | 昼夜节律控制顺式作用元件 cis-acting regulatory element involved in circadian control |
rbcS-CMA7a | 膨胀浮萍 Lemna gibba | GTCGATAAGG | 光响应元件的一部分 Part of a light-responsive element |
Table 2 Prediction analysis of AmGORK promoter sequence
基序名称Site name | 物种Species | 序列Sequence | 功能Function |
---|---|---|---|
AAAC-motif | 菠菜 Spinacia oleracea | CAATCAAAACCT | 光响应元件 Light-responsive element |
AACA-motif | 水稻 Oryza sativa | TAACAAACTCCA | 胚乳特异性表达 Involved in endosperm-specific expression |
ABRE | 拟南芥 A. thaliana | TACGTG | ABA响应顺式作用元件cis-acting element involved in the abscisic acid responses |
CAAT-box | 拟南芥 A. thaliana | GGCAAT | 启动子和增强子区域共有顺式作用元件Common cis-acting element in promoter and enhancer regions |
G-box | 金鱼草 Antirrhinum majus | CACGTA | 光反应中的顺式调节元件cis-acting regulatory element involved in light responses |
GAG-motif | 大麦 Hordeum vulgare | GGAGATG | 光响应元件的一部分 Part of a light-responsive element |
GARE-motif | 甘蓝 Brassica oleracea | AAACAGA | 赤霉素响应元件 Gibberellin-responsive element |
GCN4 | 水稻 O. sativa | TGAGTCA | 胚乳表达顺式调控元件 cis-regulatory element involved in endosperm expression |
HSE | 甘蓝 B. oleracea | AAAAAATTTC | 热响应顺式作用元件 cis-acting element involved in heat stress responses |
I-box | 豌豆 Pisum sativum | ATGATATGA | 光响应元件的一部分 Part of a light-responsive element |
LAMP-element | 菠菜 S. oleracea | CCTTATCCA | 光响应元件的一部分 Part of a light-responsive element |
LTR | 大麦 H. vulgare | CCGAAA | 低温响应顺式作用元件 cis-acting element involved in low-temperature responses |
MBS | 拟南芥 A. thaliana | TAACTG | 干旱诱导MYB结合位点 MYB binding site involved in drought-inducibility |
MRE | 荷兰芹 Petroselinum crispum | AACCTAA | MYB结合位点参与光响应 MYB binding site involved in light responses |
O2-site | 玉米 Zea mays | GATGACATGG | 玉米蛋白代谢调控顺式作用元件 cis-acting regulatory element involved in zein metabolism regulation |
Skn-1 motif | 水稻 Oryza sativa | GTCAT | 胚乳表达必需的顺式作用元件 cis-acting regulatory element required for endosperm expression |
Sp1 | 玉米 Zea mays | CC(G/A)CCC | 光响应元件 Light-responsive element |
TATA-box | 拟南芥 A. thaliana | TATA | 在转录开始前30 bp核心启动子元件 Core promoter element around -30 bp of transcription start |
TC-rich repeats | 烟草 Nicotiana tabacum | ATTTTCTCCA | 防御及胁迫响应顺式作用元件 cis-acting element involved in defense and stress responses |
TCT-motif | 拟南芥 A.s thaliana | TCTTAC | 光响应元件的一部分 Part of a light-responsive element |
circadian | 番茄 Lycopersicon esculentum | CAANNNNATC | 昼夜节律控制顺式作用元件 cis-acting regulatory element involved in circadian control |
rbcS-CMA7a | 膨胀浮萍 Lemna gibba | GTCGATAAGG | 光响应元件的一部分 Part of a light-responsive element |
[1] | 马倩, 马宝月, 穆波, 等. 植物基因启动子的克隆及分析的研究进展[J]. 中国农业文摘-农业工程, 2018, 30(3):23-29. |
Ma Q, Ma BY, Mu B, et al. Research progress on cloning and analysis of plant gene promoter[J]. Agric Sci Eng China, 2018, 30(3):23-29. | |
[2] | 杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述[J]. 分子植物育种, 2018, 16(5):1482-1493. |
Yang PF, Duan GQ, Hu XW, et al. Overview of higher plant promoters research[J]. Mol Plant Breed, 2018, 16(5):1482-1493. | |
[3] |
Maheshwari P, Assmann SM, Albert R. A guard cell abscisic acid(ABA)network model that captures the stomatal resting state[J]. Front Physiol, 2020, 11:927.
doi: 10.3389/fphys.2020.00927 pmid: 32903539 |
[4] |
Kuromori T, Seo M, Shinozaki K. ABA transport and plant water stress responses[J]. Trends Plant Sci, 2018, 23(6):513-522.
doi: S1360-1385(18)30085-2 pmid: 29731225 |
[5] |
Hosy E, Vavasseur A, Mouline K, et al. The Arabidopsis outward K+channel GORK is involved in regulation of stomatal movements and plant transpiration[J]. PNAS, 2003, 100(9):5549-5554.
doi: 10.1073/pnas.0733970100 URL |
[6] |
Ache P, Becker D, Ivashikina N, et al. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K +-selective, K+-sensing ion channel[J]. FEBS Lett, 2000, 486(2):93-98.
pmid: 11113445 |
[7] |
Eisenach C, Papanatsiou M, Hillert EK, et al. Clustering of the K+channel GORK of Arabidopsis parallels its gating by extracellular K+[J]. Plant J, 2014, 78(2):203-214.
doi: 10.1111/tpj.12471 URL |
[8] |
Becker D, Hoth S, Ache P, et al. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress[J]. FEBS Lett, 2003, 554(1/2):119-126.
doi: 10.1016/S0014-5793(03)01118-9 URL |
[9] |
Ooi A, Lemtiri-Chlieh F, Wong A, et al. Direct modulation of the guard cell outward-rectifying potassium channel(GORK)by abscisic acid[J]. Mol Plant, 2017, 10(11):1469-1472.
doi: 10.1016/j.molp.2017.08.010 URL |
[10] |
Lim CW, Kim SH, Choi HW, et al. The shaker type potassium channel, GORK, regulates abscisic acid signaling in Arabidopsis[J]. Plant Pathol J, 2019, 35(6):684-691.
doi: 10.5423/PPJ.OA.07.2019.0199 URL |
[11] |
Adem GD, Chen G, Shabala L, et al. GORK channel:a master switch of plant metabolism?[J]. Trends Plant Sci, 2020, 25(5):434-445.
doi: 10.1016/j.tplants.2019.12.012 URL |
[12] |
Li J, Zhang H, Lei H, et al. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus(Maxim. )Cheng F[J]. Plant Cell Rep, 2016, 35(4):803-815.
doi: 10.1007/s00299-015-1922-6 URL |
[13] | 段义忠, 杜忠毓, 亢福仁. 西北干旱区孑遗濒危植物蒙古沙冬青群落特征及与环境因子的关系[J]. 植物研究, 2018, 38(6):834-842. |
Duan YZ, Du ZY, Kang FR. Community characteristics of endangered plant of Ammopiptanthus mongolicus to environmental factors in northwest arid area of China[J]. Bull Bot Res, 2018, 38(6):834-842. | |
[14] | 马惠成, 李小伟, 杨君珑, 等. 蒙古沙冬青群落区系组成及分类研究[J]. 西北植物学报, 2020, 40(4):706-716. |
Ma HC, Li XW, Yang JL, et al. Study on the community classification and floristic composition of Ammopiptanthus mongolicus[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(4):706-716. | |
[15] | 麦尔哈巴·阿布拉, 刘博, 李征珍, 等. 蒙古沙冬青群落组成与结构研究[J]. 中央民族大学学报:自然科学版, 2019, 28(2):12-16. |
Merhaba ABLA, Liu B, Li ZZ, et al. Composition and structure of community of Ammopiptanthus mongolicus in alasan left banner, Inner Mongolia[J]. J Minzu Univ China:Nat Sci Ed, 2019, 28(2):12-16. | |
[16] |
Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. Biotechniques, 2007, 43(5):649-50, 652, 654 passim.
doi: 10.2144/000112601 URL |
[17] | 杜传慧, 付艳, 王利敏, 等. 苹果异戊烯基转移酶基因启动子调控特性研究[J]. 核农学报, 2019, 33(3):455-463. |
Du CH, Fu Y, Wang LM, et al. Regulatory characteristics of the apple isopentenyl transferase gene promoter[J]. J Nucl Agric Sci, 2019, 33(3):455-463. | |
[18] |
Han L, Li J, Jin M, et al. Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus[J]. Gene, 2018, 653:29-42.
doi: 10.1016/j.gene.2018.02.015 URL |
[19] | 杨瑞娟, 白建荣, 李锐, 等. 诱导型启动子在植物基因工程中的研究进展[J]. 山西农业科学, 2018, 46(2):292-298. |
Yang RJ, Bai JR, Li R, et al. Research progress of the inducible promoters in plant genetic engineering[J]. J Shanxi Agric Sci, 2018, 46(2):292-298. | |
[20] | 田晨菲, 李建华, 王勇. 植物合成生物学调控元件的研究进展[J]. 植物生理学报, 2020, 56(11):2261-2274. |
Tian CF, Li JH, Wang Y. Research advances of regulatory elements in plant synthetic biology[J]. Plant Physiol J, 2020, 56(11):2261-2274. | |
[21] | 王海波, 郭俊云. 小桐子低温诱导型启动子JcDnaJ20p的克隆及烟草转化功能鉴定[J]. 生物技术通报, 2021, 37(2):24-31. |
Wang HB, Guo JY. Molecular cloning of cold-induced JcDnaJ20p promoter from Jatropha curcas and its functional identification in transgenic tobacco[J]. Biotechnol Bull, 2021, 37(2):24-31. | |
[22] | 周涛, 王娟, 胡佳蕙, 等. 番茄转录因子基因SlWRKY6的克隆与原核表达分析[J]. 西北植物学报, 2020, 40(11):1824-1832. |
Zhou T, Wang J, Hu JH, et al. Cloning and prokaryotic expression analysis of a WRKY transcription factor gene SlWRKY6 in Solanum lycopersicum[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(11):1824-1832. | |
[23] | Ma YL, Cao J, He JH, et al. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses[J]. Int J Mol Sci, 2018, 19(11):E3643. |
[24] |
Klessig DF, Choi HW, Dempsey DA. Systemic acquired resistance and salicylic acid:past, present, and future[J]. Mol Plant Microbe Interact, 2018, 31(9):871-888.
doi: 10.1094/MPMI-03-18-0067-CR URL |
[25] |
Prodhan MY, Munemasa S, Nahar MN, et al. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway[J]. Plant Physiol, 2018, 178(1):441-450.
doi: 10.1104/pp.18.00321 pmid: 30037808 |
[26] |
Gaymard F, Pilot G, Lacombe B, et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem Sap[J]. Cell, 1998, 94(5):647-655.
pmid: 9741629 |
[27] |
Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression[J]. Plant J, 2001, 28(4):455-464.
pmid: 11737782 |
[28] |
Corratgé-Faillie C, Ronzier E, Sanchez F, et al. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33[J]. FEBS Lett, 2017, 591(13):1982-1992.
doi: 10.1002/1873-3468.12687 pmid: 28543075 |
[29] |
Hedrich R, Geiger D. Biology of SLAC1-type anion channels-from nutrient uptake to stomatal closure[J]. New Phytol, 2017, 216(1):46-61.
doi: 10.1111/nph.14685 pmid: 28722226 |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[3] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[4] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[7] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[8] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[9] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[10] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[11] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[12] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[13] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[14] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
[15] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||