Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 202-209.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1604
Previous Articles Next Articles
WU Lin-hui(), GENG Bi-miao, WANG Yan-jie, ZHOU Guo-wei, SUN Qing-ye, ZHAO Qiong()
Received:
2021-12-28
Online:
2022-11-26
Published:
2022-12-01
Contact:
ZHAO Qiong
E-mail:2429728482@qq.com;zhaoqiong2019@ahu.edu.cn
WU Lin-hui, GENG Bi-miao, WANG Yan-jie, ZHOU Guo-wei, SUN Qing-ye, ZHAO Qiong. Effects of Nitrogen Addition on the Abundance of Bacterial Phosphatase Encoding Genes in the Soil of Pinus sylvestris var. mongolica Plantation[J]. Biotechnology Bulletin, 2022, 38(11): 202-209.
引物Primer | 引物名称Primer name | 引物长度Primer length/bp | 引物序列Primer sequence(5'-3') | 参考文献Reference |
---|---|---|---|---|
phoD | ALPS-F730 | 370 | CAGTGGGACGA CCACGAGGT | [ |
ALPS-1101 | GAGGCCGATCG GCATGTCG | |||
phoC | phoC-A-F1 | 155 | CGGCTCCTATCCGTCCGG | [ |
phoC-A-R1 | CAACATCGCTTTGCCAGTG | |||
appA | appA-F | 247 | CAGATACGTCCAGTCCCGAT | |
appA-R | AGTTCCGATGGTAATGCCTG | |||
16S rRNA | 338F | 468 | ACTCCTACGGGAGGCAGCAG | [ |
806R | GGACTACHVGGGTWTCTAAT |
Table 1 Amplification primers for functional gene
引物Primer | 引物名称Primer name | 引物长度Primer length/bp | 引物序列Primer sequence(5'-3') | 参考文献Reference |
---|---|---|---|---|
phoD | ALPS-F730 | 370 | CAGTGGGACGA CCACGAGGT | [ |
ALPS-1101 | GAGGCCGATCG GCATGTCG | |||
phoC | phoC-A-F1 | 155 | CGGCTCCTATCCGTCCGG | [ |
phoC-A-R1 | CAACATCGCTTTGCCAGTG | |||
appA | appA-F | 247 | CAGATACGTCCAGTCCCGAT | |
appA-R | AGTTCCGATGGTAATGCCTG | |||
16S rRNA | 338F | 468 | ACTCCTACGGGAGGCAGCAG | [ |
806R | GGACTACHVGGGTWTCTAAT |
引物Primer | 扩增体系Amplification system | 扩增程序Amplification procedure |
---|---|---|
phoD | 10 μL体系:Bestar Sybr Green qPCR Master Mix 5 μL,引物0.4 μL,DNA样品2 μL(10 ng·μL-1),灭菌水2.6 μL | 预变性95℃ 300 s,变性 95℃ 15 s,退火58℃ 30 s,延伸 72℃ 20 s,40 个循环 |
phoC | 预变性 95℃ 300 s,变性 95℃ 15 s,退火57℃ 30 s,延伸 72℃ 20 s,40 个循环 | |
appA | 预变性 95℃ 300 s,变性 95℃ 15 s,退火60℃ 30 s,延伸 72℃ 20 s,40 个循环 | |
16S rRNA | 预变性 95℃ 300 s,变性 95℃ 15 s,退火55℃ 30 s,延伸 72℃ 20 s,40 个循环 |
Table 2 Fluorescence quantitative PCR reaction conditions
引物Primer | 扩增体系Amplification system | 扩增程序Amplification procedure |
---|---|---|
phoD | 10 μL体系:Bestar Sybr Green qPCR Master Mix 5 μL,引物0.4 μL,DNA样品2 μL(10 ng·μL-1),灭菌水2.6 μL | 预变性95℃ 300 s,变性 95℃ 15 s,退火58℃ 30 s,延伸 72℃ 20 s,40 个循环 |
phoC | 预变性 95℃ 300 s,变性 95℃ 15 s,退火57℃ 30 s,延伸 72℃ 20 s,40 个循环 | |
appA | 预变性 95℃ 300 s,变性 95℃ 15 s,退火60℃ 30 s,延伸 72℃ 20 s,40 个循环 | |
16S rRNA | 预变性 95℃ 300 s,变性 95℃ 15 s,退火55℃ 30 s,延伸 72℃ 20 s,40 个循环 |
处理Treatment | 测定指标Measurement indicators | ||||||
---|---|---|---|---|---|---|---|
pH | 铵态氮 NH4+-N/(mg·kg-1) | 硝态氮 NO3--N/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 总磷 TP/(g·kg-1) | 总氮 TN/(g·kg-1) | 有机质 SOM/(g·kg-1) | |
ZCK | 6.58±0.14 | 2.62±0.18 | 0.09±0.01 | 2.06±0.36 | 0.16±0.02 | 0.38±0.04 | 10.66±0.72 |
ZN | 5.78±0.05** | 17.89±1.09** | 0.60±0.12* | 1.12±0.05* | 0.10±0.02* | 0.45±0.04 | 12.18±0.55 |
Table 3 Effects of nitrogen addition on the basic physical and chemical properties of soil
处理Treatment | 测定指标Measurement indicators | ||||||
---|---|---|---|---|---|---|---|
pH | 铵态氮 NH4+-N/(mg·kg-1) | 硝态氮 NO3--N/(mg·kg-1) | 有效磷 AP/(mg·kg-1) | 总磷 TP/(g·kg-1) | 总氮 TN/(g·kg-1) | 有机质 SOM/(g·kg-1) | |
ZCK | 6.58±0.14 | 2.62±0.18 | 0.09±0.01 | 2.06±0.36 | 0.16±0.02 | 0.38±0.04 | 10.66±0.72 |
ZN | 5.78±0.05** | 17.89±1.09** | 0.60±0.12* | 1.12±0.05* | 0.10±0.02* | 0.45±0.04 | 12.18±0.55 |
pH | MBP | MBC | NH4+-N | NO3--N | AP | TP | TN | SOM | 16S rRNA | phoD | phoC | appA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACP | 0.890** | 0.864** | 0.877** | -0.995** | -0.918** | 0.692 | 0.582 | -0.465 | -0.528 | 0.883** | 0.595 | 0.764* | 0.735* |
ALP | 0.883** | 0.725* | 0.764* | -0.860** | -0.739* | 0.438 | 0.346 | -0.382 | -0.220 | 0.799* | 0.267 | 0.597 | 0.646 |
PHY | 0.692 | 0.811* | 0.757* | -0.642 | -0.698 | 0.361 | 0.484 | -0.095 | -0.589 | 0.383 | 0.567 | 0.344 | 0.396 |
16S rRNA | 0.762* | 0.755* | 0.796* | -0.910** | -0.791* | 0.709* | 0.550 | -0.430 | -0.524 | 1 | 0.671 | 0.880** | 0.923** |
phoD | 0.461 | 0.731* | 0.727* | -0.631 | -0.582 | 0.856** | 0.857 | -0.500 | -0.884** | 0.671 | 1 | 0.865** | 0.796* |
phoC | 0.596 | 0.713* | 0.781* | -0.782* | -0.674 | 0.935** | 0.770 | -0.653 | -0.775* | 0.880** | 0.865** | 1 | 0.902** |
appA | 0.676 | 0.772* | 0.821* | -0.781* | -0.698 | 0.702 | 0.608 | -0.464 | -0.677 | 0.923** | 0.796* | 0.902** | 1 |
Table 4 Correlation among soil enzyme activities,gene copy numbers and soil physicochemical properties
pH | MBP | MBC | NH4+-N | NO3--N | AP | TP | TN | SOM | 16S rRNA | phoD | phoC | appA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACP | 0.890** | 0.864** | 0.877** | -0.995** | -0.918** | 0.692 | 0.582 | -0.465 | -0.528 | 0.883** | 0.595 | 0.764* | 0.735* |
ALP | 0.883** | 0.725* | 0.764* | -0.860** | -0.739* | 0.438 | 0.346 | -0.382 | -0.220 | 0.799* | 0.267 | 0.597 | 0.646 |
PHY | 0.692 | 0.811* | 0.757* | -0.642 | -0.698 | 0.361 | 0.484 | -0.095 | -0.589 | 0.383 | 0.567 | 0.344 | 0.396 |
16S rRNA | 0.762* | 0.755* | 0.796* | -0.910** | -0.791* | 0.709* | 0.550 | -0.430 | -0.524 | 1 | 0.671 | 0.880** | 0.923** |
phoD | 0.461 | 0.731* | 0.727* | -0.631 | -0.582 | 0.856** | 0.857 | -0.500 | -0.884** | 0.671 | 1 | 0.865** | 0.796* |
phoC | 0.596 | 0.713* | 0.781* | -0.782* | -0.674 | 0.935** | 0.770 | -0.653 | -0.775* | 0.880** | 0.865** | 1 | 0.902** |
appA | 0.676 | 0.772* | 0.821* | -0.781* | -0.698 | 0.702 | 0.608 | -0.464 | -0.677 | 0.923** | 0.796* | 0.902** | 1 |
[1] |
Attiwill PM, Adams MA. Nutrient cycling in forests[J]. New Phytol, 1993, 124(4):561-582.
doi: 10.1111/j.1469-8137.1993.tb03847.x pmid: 33874438 |
[2] | 赵少华, 宇万太, 张璐, 等. 土壤有机磷研究进展[J]. 应用生态学报, 2004, 15(11):2189-2194. |
Zhao SH, Yu WT, Zhang L, et al. Research advance in soil organic phosphorus[J]. Chin J Appl Ecol, 2004, 15(11):2189-2194. | |
[3] | 李巧玲, 李爱博, 黄志远, 等. 解磷微生物在林业土壤生态修复中的应用进展[J]. 世界林业研究, 2022, 35(1):15-20. |
Li QL, Li AB, Huang ZY, et al. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration[J]. World For Res, 2022, 35(1):15-20. | |
[4] | 滕泽栋, 李敏, 朱静, 等. 解磷微生物对土壤磷资源利用影响的研究进展[J]. 土壤通报, 2017, 48(1):229-235. |
Teng ZD, Li M, Zhu J, et al. Research advances in effect of phosphate-solubilizing microorganisms on soil phosphorus resource utilization[J]. Chin J Soil Sci, 2017, 48(1):229-235. | |
[5] |
Dick WA, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biol Biochem, 2000, 32(13):1915-1919.
doi: 10.1016/S0038-0717(00)00166-8 URL |
[6] | 王小春, 梁新强. 生态环境中植酸酶种类及来源分析[J]. 环境生态学, 2020, 2(4):51-56. |
Wang XC, Liang XQ. Analysis of the types and sources of phytase in ecological environment[J]. Environ Ecol, 2020, 2(4):51-56.
doi: 10.1890/1540-9295(2004)002[0051:PL]2.0.CO;2 URL |
|
[7] | 郑曼曼, 王超, 沈仁芳. 碳酸钙和根际作用对酸性红壤解磷微生物丰度的影响[J]. 土壤, 2020, 52(4):704-709. |
Zheng MM, Wang C, Shen RF. Effects of calcium carbonate and rhizosphere on abundance of phosphate-solubilizing microorganisms in acidic red soil[J]. Soils, 2020, 52(4):704-709. | |
[8] |
Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001):192-196.
doi: 10.1126/science.1186120 pmid: 20929768 |
[9] |
Wu JP, Liu WF, Fan HB, et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J]. Ecol Evol, 2013, 3(11):3895-3905.
doi: 10.1002/ece3.750 pmid: 24198947 |
[10] |
Tibbett M, Sanders FE. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality[J]. Ann Bot, 2002, 89(6):783-789.
doi: 10.1093/aob/mcf129 URL |
[11] |
Ikoyi I, Egeter B, Chaves C, et al. Responses of soil microbiota and nematodes to application of organic and inorganic fertilizers in grassland columns[J]. Biol Fertil Soils, 2020, 56(5):647-662.
doi: 10.1007/s00374-020-01440-5 URL |
[12] |
Luo GW, Ling N, Xue C, et al. Nitrogen-inputs regulate microbial functional and genetic resistance and resilience to drying-rewetting cycles, with implications for crop yields[J]. Plant Soil, 2019, 441(1/2):301-315.
doi: 10.1007/s11104-019-04120-y URL |
[13] |
Chen XD, Jiang N, Condron LM, et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs[J]. Geoderma, 2019, 349:36-44.
doi: 10.1016/j.geoderma.2019.04.039 URL |
[14] | 林贵刚, 赵琼, 赵蕾, 等. 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响[J]. 应用生态学报, 2012, 23(5):1188-1194. |
Lin GG, Zhao Q, Zhao L, et al. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land[J]. Chin J Appl Ecol, 2012, 23(5):1188-1194. | |
[15] | 朱芸芸, 李敏, 曲博, 等. 湿地植物根际土壤磷酸酶活性变化规律研究[J]. 环境科学与技术, 2016, 39(10):106-112. |
Zhu YY, Li M, Qu B, et al. Research on the variations of phosphatase activity in rhizosphere soil of wetland plants[J]. Environ Sci Technol, 2016, 39(10):106-112. | |
[16] |
Dassa J, Marck C, Boquet PL. The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2. 5 acid phosphatase and glucose-1-phosphatase[J]. J Bacteriol, 1990, 172(9):5497-5500.
pmid: 2168385 |
[17] |
Fraser TD, Lynch DH, Gaiero J, et al. Quantification of bacterial non-specific acid(phoC)and alkaline(phoD)phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields[J]. Appl Soil Ecol, 2017, 111:48-56.
doi: 10.1016/j.apsoil.2016.11.013 URL |
[18] | 王玉荣, 杨成聪, 葛东颖, 等. 扩增区域对鲊广椒细菌MiSeq测序的影响[J]. 食品科学, 2019, 40(10):134-140. |
Wang YR, Yang CC, Ge DY, et al. Influence of different amplified regions on results of bacterial diversity in zhaguangjiao, a Chinese traditional fermented chili product, by MiSeq sequencing[J]. Food Sci, 2019, 40(10):134-140. | |
[19] | 杜荣骞. 生物统计学[M]. 北京: 高等教育出版社, 1999. |
Du RQ. Biostatistics[M]. Beijing: Higher Education Press, 1999. | |
[20] |
Waldrop MP, Zak DR, Sinsabaugh RL, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecol Appl, 2004, 14(4):1172-1177.
doi: 10.1890/03-5120 URL |
[21] |
Wei CZ, Yu Q, Bai E, et al. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems[J]. Glob Chang Biol, 2013, 19(12):3688-3697.
doi: 10.1111/gcb.12348 URL |
[22] |
Wang C, Liu DW, Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biol Biochem, 2018, 120:126-133.
doi: 10.1016/j.soilbio.2018.02.003 URL |
[23] |
Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6):1354-1364.
pmid: 17601128 |
[24] |
Tan H, Barret M, Mooij MJ, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biol Fertil Soils, 2013, 49(6):661-672.
doi: 10.1007/s00374-012-0755-5 URL |
[25] |
Chen XD, Jiang N, Chen ZH, et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials[J]. Appl Soil Ecol, 2017, 119:197-204.
doi: 10.1016/j.apsoil.2017.06.019 URL |
[26] |
Zhalnina K, Dias R, de Quadros PD, et al. Soil pH determines microbial diversity and composition in the park grass experiment[J]. Microb Ecol, 2015, 69(2):395-406.
doi: 10.1007/s00248-014-0530-2 pmid: 25395291 |
[27] |
Taylor JP, Wilson B, Mills MS, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biol Biochem, 2002, 34(3):387-401.
doi: 10.1016/S0038-0717(01)00199-7 URL |
[28] |
Zheng MM, Wang C, Li WX, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of Southern China[J]. Front Microbiol, 2019, 10:2654.
doi: 10.3389/fmicb.2019.02654 pmid: 31824452 |
[29] |
Ragot SA, Huguenin-Elie O, Kertesz MA, et al. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil[J]. Plant Soil, 2016, 408(1/2):15-30.
doi: 10.1007/s11104-016-2902-5 URL |
[30] |
Rana MS, Sun XC, Imran M, et al. Mo-inefficient wheat response toward molybdenum supply in terms of soil phosphorus availability[J]. J Soil Sci Plant Nutr, 2020, 20(3):1560-1573.
doi: 10.1007/s42729-020-00298-8 URL |
[31] |
Jenkinson DS, Ladd JN. Microbial biomass in soil:measurement and turnover[J]. Soil biochemistry, 1981, 5(1):415-471.
doi: 10.1016/0038-0717(73)90068-0 URL |
[32] |
Fraser TD, Lynch DH, Bent E, et al. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management[J]. Soil Biol Biochem, 2015, 88:137-147.
doi: 10.1016/j.soilbio.2015.04.014 URL |
[33] |
Recena R, Cade-Menun BJ, Delgado A. Organic phosphorus forms in agricultural soils under Mediterranean climate[J]. Soil Sci Soc Am J, 2018, 82(4):783-795.
doi: 10.2136/sssaj2017.10.0360 URL |
[34] |
Nannipieri P, Giagnoni L, Renella G, et al. Soil enzymology:classical and molecular approaches[J]. Biol Fertil Soils, 2012, 48(7):743-762.
doi: 10.1007/s00374-012-0723-0 URL |
[35] |
丁锐, 陈旭辉, 李炳学. 植酸酶研究进展及土壤植酸酶应用展望[J]. 生物技术通报, 2019, 35(7):190-195.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1027 |
Ding R, Chen XH, Li BX. Research advances on phytase and prospect of applying soil phytase[J]. Biotechnol Bull, 2019, 35(7):190-195.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1027 |
|
[36] | Nannipieri P, Giagnoni L, Landi L, et al. Role of Phosphatase Enzymes in Soil[M]// Bünemann E., Oberson A., Frossard E. Phosphorus Action. Berlin:Springer, 2011:215-243. |
[37] |
Neumann G, Römheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants[J]. Plant Soil, 1999, 211(1):121-130.
doi: 10.1023/A:1004380832118 URL |
[38] |
Treseder KK, Vitousek PM. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954.
doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2 URL |
[1] | LI Qi, YANG Xiao-lei, LI Xiao-lin, SHEN You-lei, LI Jian-hong, YAO Tuo. Identification of Phytate Phosphorus-solubilizing PGPB in Avena sativa Rhizosphere from Alpine Grassland and Functional Characteristics of Dominant Genus Pseudomonas sp. [J]. Biotechnology Bulletin, 2023, 39(3): 243-253. |
[2] | LI Ya-nan, YU Li-hong, CHEN Xin-mei, YANG Hao-meng, HUANG Huo-qing. Expression and Characterization of Aquatic Neutral Phytase Gene from Penicillium sp. C1 in Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(2): 134-141. |
[3] | DING Rui, CHEN Xu-hui, LI Bing-xue. Research Advances on Phytase and Prospect of Applying Soil Phytase [J]. Biotechnology Bulletin, 2019, 35(7): 190-195. |
[4] | YUAN Lin, HUANG Zhao, ZENG Jing, GUO Jian-jun, ZHANG Ting, Lü Jun. Fusion of Phytase YiAPPA with the Raw-starch Binding Domain and Characterization of the Fusion Enzyme [J]. Biotechnology Bulletin, 2018, 34(3): 200-207. |
[5] | Huang Dafang. GM Crop Breeding : Current Status and Prospects [J]. Biotechnology Bulletin, 2015, 31(4): 3-6. |
[6] | Li Yanan, Huang Huoqing, Yao Bin, Zhao Qing, Liu Kun, Ma Wenkang. Gene Cloning,Expression and Characterization of an HAP Phytase from Pseudomonas fluorescens 206 [J]. Biotechnology Bulletin, 2013, 0(8): 139-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||