Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (7): 190-195.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1027
Previous Articles Next Articles
DING Rui1, CHEN Xu-hui2, LI Bing-xue1
Received:
2018-11-28
Online:
2019-07-26
Published:
2019-07-29
DING Rui, CHEN Xu-hui, LI Bing-xue. Research Advances on Phytase and Prospect of Applying Soil Phytase[J]. Biotechnology Bulletin, 2019, 35(7): 190-195.
[1] 李新乐, 侯向阳, 穆怀彬. 连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响[J]. 草业学报, 2015, 24(8):218-224. [2] 陆欣春, 韩晓增, 邹文秀. 作物高效利用土壤磷素的研究进展[J]. 土壤与作物, 2013, 2(4):164-172. [3] 宋春, 韩晓增. 长期施肥条件下土壤磷素的研究进展[J]. 土壤, 2009, 41(1):21-26. [4] 刘世亮, 介晓磊, 李有田, 等. 土壤-植物根际磷的生物有效性研究进展[J]. 土壤与环境, 2002, 11(2):178-182. [5] Turner BL, Papházy MJ, Haygarth PM, et al.Inositol phosphates in the environment[J]. Philos Trans R Soc Lord B Biol Sci, 2002, 357:449-469. [6] 蔡秋燕, 张锡洲, 等. 磷高效野生大麦拔节期对植酸态有机磷的利用[J]. 中国农业科学, 2015, 48(16):3146-3155. [7] 刘涛, 蔡秋燕, 张锡洲, 等. 磷高效型野生大麦根系形态和根系分泌物对低水平植酸态有机磷的响应特征[J]. 植物营养与肥料学报, 2016, 22(6):1538-1547. [8] 钮旭光, 韩梅, 韩晓日. 宏基因组学:土壤微生物研究的新策略[J]. 微生物学通报, 2007, 34(3):576-579. [9] Romano N, Kumar V.Phytase in animal feed[M]//Nunes CS, Kumar V. Enzymes in Human and Animal Nutrition Principles and Perspectives. Academic Press, 2018, 73-88. [10] Rocky-Salimi K, Hashemi M, Safari M, et al.A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis B. S. 46[J]. Journal of Advanced Research, 2016, 7:381-390. [11] Vashishth A, Ram S, Beniwal V.Cereal phytases and their importance in improvement of micronutrients bioavailability[J]. 3 Biotech, 2017, 7:42. [12] 王凯, 张威, 李师翁. 植酸酶及其应用[J]. 中国生物工程杂志, 2015, 35(9):85-93. [13] Mukhametzynova AD, Akhmetova AI, Sharipova MR.Microorgan-isms as phytase producers[J]. Microbiology, 2012, 81(3):267-275. [14] Yao MZ, Zhang YH, Lu WL, et al.Phytases:crystal structures, protein engineering and potential biotechnological applications[J]. J Appl Microbiol, 2011, 112:1-14. [15] Borgi MA, Boudebbouze S, Mkaouar H, et al.Bacillus phytases:current status and future prospects[J]. Bioengineered, 2015, 6(4):233-236. [16] Balwani I, Charkavarty K, Gaur S.Role of phytase producing micr-oorganisms towards agricultural sustainability[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12:23-29. [17] Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Treviño JG, et al.Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme[J]. Appl Environ Microbiol, 2010, 76(16):5601-5608. [18] Ushasree MV, Vidya J, et al.Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression[J]. Biotechnology Letter, 2014, 36:85-91. [19] Roy MP, Mazumdar D, Dutta S, et al.Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli[J]. PLoS One, 2016, 11(1):e0145745. [20] Borgi MA, Boudebbouze S, Aghajari N, et al.The attractive recombinant phytase from Bacillus licheniformis:biochemical and molecular characterization[J]. Appl Microbiol Biotechnol, 2014, 98(13):5937-5947. [21] Shao N, Huang H, Meng K, et al.Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074[J]. Journal of Microbiology and Biotechnology, 2008, 18(7):1221-1226. [22] Dai F, Qiu L, Ye L, et al.Identification of a phytase gene in barley(Hordeum vulgare L.)[J]. PLoS One, 2011, 6(4):e18829. [23] Holme IB, Dionisio G, Madsen CK, Brinch-Pedersen H.Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains[J]. Plant Biotechnology Journal, 2017, 15:415-422. [24] Sharma U, Kumari S, Sinha K, Kumar S.Isolation and molecular characterization of phytase producting actinobacteria of fruit orchard[J]. Nucleus, 2017, 60:187-195. [25] Tan H, Mooij M J, Barret M, et al.Identification of novel phytase genes from an agricultural soil-derived metagenome[J]. Journal of Microbiology and Biotechnology, 2014, 24(1):113-118. [26] Zhang S, Liao S, Yu X, et al.Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus[J]. Appl Microbiol Biotechnol, 2015, 99:5339-5350. [27] 李晰亮, 李晓薇, 赵竟男, 等. 植酸酶研究进展[J]. 黑龙江农业科学, 2015, 8:149-152. [28] Casey A, Walsh G.Purification and characterization of extracellular phytase from Aspergillus niger ATCC9142[J]. Bioresource Technology, 2003, 86:183-188. [29] 姜海琴, 范彩云, 李吕木, 等. 宏基因组技术在筛选未培养微生物中新型酶的研究进展[J]. 湖北农业科学, 2011, 50(18):3673-3677. [30] Huang H, Shi P, Wang Y, et al.Diversity of Beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature[J]. Appl Environ Microbiol, 2009, 75(6):1508-1516. [31] Huang H, Zhang R, Fu D, et al.Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation[J]. Environ Microbiol, 2011, 13(3):747-757. [32] Farias N, Almeida I, Meneses C.New bacterial phytase through metagenomic prospection[J]. Molecules, 2018, 23:448. [33] Fugthong A, Boonyapakron K, Sornlek W, et al.Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum(BCC17694)phytase expressed in Pichia pastoris[J]. Protein Expression and Purification, 2010, 70:60-67. [34] 姚斌, 袁铁铮, 王元火, 等. 来源于Bacillus subtilis的中性植酸酶基因的克隆及在大肠杆菌中的表达[J]. 生物工程学报, 2001, 17(1):11-15. [35] Chen CC, Wu PH, Huang CT, Cheng KJ.A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase[J]. Enzyme and Microbial Technology, 2004, 35:315-320. [36] Hong CY, Cheng KJ, Tseng TH, et al.Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds[J]. Transgenic Res, 2004, 13:29-39. [37] Xiao K, Harrison MJ, Wang ZY.Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 2005, 222:27-36. [38] Garrett JB, Kretz KA, O’Donoghue E, et al. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement[J]. Appl Environ Microbiol, 2004, 70(5):3041-3046. [39] Viader-Salvadó JM, Gallegos-López JA, Carreón-Treviño JG, et al.Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris[J]. Appl Environ Microbiol, 2010, 76(19):6423-6430. [40] Spier MR, Rodrigues M, Paludo L, Cerutti MLMN.Perspectives of phytases in nutrition, biocatalysis, and soil stabilization[M]//Nunes CS, Kumar V. Enzymes in Human and Animal Nutrition Principles and Perspectives. Academic Press, 2018, 89-104. [41] Yang XZ, Chen LJ.Distribution of exogenous phytase activity in soil solid-liquid phases and their effect on soil organic P hydrolysis[J]. J Plant Nutr Soil Sci, 2017, 180:39-48. [42] Gujar PD, Bhavsar KP, Khire JM.Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat(Triticuma estivum Linn. )and its potential for use as a soil amendment[J]. J Sci Food Agri, 2013, 93(9):2242-2247. [43] 苏毅, 杜文雅, 李晓晓, 等. 植酸酶生物肥料对农作物生长的促进作用[J]. 天津师范大学学报:自然科学版, 2014, 34(1):78-80. [44] 曲博, 李敏, 其美, 等. 外源植酸酶对野鸭湖湿地土壤有机磷转化的影响研究[J]. 生态环境学报, 2015, 24(2):250-254. [45] 孙临泉, 陈子学, 张洪立, 等. 微生物植酸酶对土壤有机磷组分含量及有效性的影响[J]. 天津师范大学学报:自然科学版, 2011, 31(2):86-90. [46] 陈立新, 苏毅, 杜文雅. 植酸酶微生物肥料对蔬菜的促生长作用及后茬效应[J]. 天津师范大学学报:自然科学版, 2015, 35(2):85-88. [47] Maruyama H, Yamamura T, et al.Effect of exogenous phosphatase and phytase activities on organic phosphate mobilization in soil with different phosphate adsorption capacities[J]. Soil Science and Plant Nutrition, 2012, 58:41-51. [48] 张琪, 陈茹梅, 杨文竹, 等. 组成型表达转植酸酶基因(phyA2)玉米的获得[J]. 农业生物技术学报, 2010, 18(4):623-629. [49] 侯文通, 杨俐苹, 白由路, 等. 转植酸酶基因玉米提高土壤磷素有效性初步研究[J]. 土壤通报, 2014, 45(3):654-659. [50] Xiao K, Katagi H, Harrison M, et al.Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of purple acidphosphatase gene from M. truncatula[J]. Plant Science, 2006, 170:191-202. [51] Liu JF, Zhao CY, Ma J, et al.Agrobacterium-mediated transformation of cotton(Gossypium hirsutum L.)with a fungal phytase gene improves phosphorus acquisition[J]. Euphytica, 2011, 181(1):31-40. [52] Lung SC, Lim BL.Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco(Nicotiana tabacum)is affected by the availability of soluble phytate[J]. Plant and Soil, 2006, 279:187-199. [53] Ma XF, Wright E, Ge Y, et al.Improving phosphorus acquisition of white clover(Trifolium repens L.)by transgenic expression of plant derived phytase and acid phosphatase genes[J]. Plant Science, 2009, 176:479-488. [54] Reddy CS, Kim SC, Kaul T.Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development:a review[J]. 3 Biotech, 2017, 7:195. [55] Richardson AE, Hadobas PA, Hayes JE.Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. Plant J, 2001, 25(6):641-649. [56] Suleimanova AD, Toymentseva AA, Boulygina EA, et al.High-quality draft genome sequence of a new phytase-producting microorganism Pantoea sp. 3.5.1[J]. Standards in Genomic Sciences, 2015, 10:95. |
[1] | LI Qi, YANG Xiao-lei, LI Xiao-lin, SHEN You-lei, LI Jian-hong, YAO Tuo. Identification of Phytate Phosphorus-solubilizing PGPB in Avena sativa Rhizosphere from Alpine Grassland and Functional Characteristics of Dominant Genus Pseudomonas sp. [J]. Biotechnology Bulletin, 2023, 39(3): 243-253. |
[2] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[3] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[4] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[5] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[6] | WU Lin-hui, GENG Bi-miao, WANG Yan-jie, ZHOU Guo-wei, SUN Qing-ye, ZHAO Qiong. Effects of Nitrogen Addition on the Abundance of Bacterial Phosphatase Encoding Genes in the Soil of Pinus sylvestris var. mongolica Plantation [J]. Biotechnology Bulletin, 2022, 38(11): 202-209. |
[7] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[8] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[9] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
[10] | TANG Die, ZHOU Qian. Research Advances in Plant Genome Assembly [J]. Biotechnology Bulletin, 2021, 37(6): 1-12. |
[11] | ZHU Bin, GAN Chen-chen, WANG Hong-cheng. Characteristics of the Complete Chloroplast Genome of Dendrobium thyrsiflorum and Its Phylogenetic Relationship Analysis [J]. Biotechnology Bulletin, 2021, 37(5): 38-47. |
[12] | ZHANG Shu-hua, FANG Qian, JIA Hong-mei, HAN Gui-qi, YAN Zhu-yun, HE Dong-mei. Difference Analysis of Fungal Community Among Bulk Soil,Rhizosphere and Rhizomes of Ligusticum chuanxiong Hort. [J]. Biotechnology Bulletin, 2021, 37(4): 56-69. |
[13] | GUO Yan-ping, ZHANG Hao, ZHAO Xin-gang, LUO Hai-ling, ZHANG Ying-jun. Applications of DNA Metabarcoding in Diet Identification of Herbivores [J]. Biotechnology Bulletin, 2021, 37(3): 252-260. |
[14] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[15] | LI Ye-qing, JING Zhang-mu, JIANG Hao, XU Quan, ZHOU Hong-jun, FENG Lu. Microbiome and Its Research Progress of Anaerobic Digestion [J]. Biotechnology Bulletin, 2021, 37(1): 90-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||