Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 312-323.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0059
Previous Articles Next Articles
FU Wei-jie1(), KUANG Jie-hua1, LUO Jun1, HUANG Jian-sheng1, CHEN You-ming2, CHEN Gang1()
Received:
2022-01-15
Online:
2022-12-26
Published:
2022-12-29
Contact:
CHEN Gang
E-mail:959713953@qq.com;cheng@gdou.edu.cn
FU Wei-jie, KUANG Jie-hua, LUO Jun, HUANG Jian-sheng, CHEN You-ming, CHEN Gang. Gene Cloning of Galectin-8 in Epinephelus fuscoguttatus♀×E. polyphekadion♂ and Its Expression Responses Under Different of Ferulic Acid Level[J]. Biotechnology Bulletin, 2022, 38(12): 312-323.
原料 Ingredient | 比例Percentage/% | 营养水平Nutrient level | 比例Percentage/% |
---|---|---|---|
鱼粉Fish powder | 45 | 水分Moisture | 9.2 |
酪蛋白Casein | 12 | 粗蛋白 Crude protein | 51.30 |
小麦谷朊粉 Vital wheat gluten | 8 | 粗脂肪 Crude lipid | 10.4 |
玉米蛋白粉 Corn gluten meal | 5 | 粗纤维 Crude fiber | 0.1 |
面粉Wheat flour | 17.22 | 粗灰分Ash | 9.6 |
鱼油Fish oil | 6 | ||
大豆卵磷脂Soybean lecithin | 2 | ||
维生素与矿物质预混料 Vitamin and mineral premixa | 2 | ||
氯化胆碱Choline chloride | 0.5 | ||
磷酸二氢钙 Ca(H2PO4)2 | 1.5 | ||
维生素C Vitamin C | 0.05 | ||
乙氧基喹啉Ethoxyquin | 0.03 | ||
微晶纤维素Microcrystalline cellulose | 0.4 | ||
诱食剂Attractant | 0.1 | ||
FA预混料FA premixb | 0.2 | ||
Total | 100 |
Table 1 Ingredient composition and nutrient levels of the experimental diets
原料 Ingredient | 比例Percentage/% | 营养水平Nutrient level | 比例Percentage/% |
---|---|---|---|
鱼粉Fish powder | 45 | 水分Moisture | 9.2 |
酪蛋白Casein | 12 | 粗蛋白 Crude protein | 51.30 |
小麦谷朊粉 Vital wheat gluten | 8 | 粗脂肪 Crude lipid | 10.4 |
玉米蛋白粉 Corn gluten meal | 5 | 粗纤维 Crude fiber | 0.1 |
面粉Wheat flour | 17.22 | 粗灰分Ash | 9.6 |
鱼油Fish oil | 6 | ||
大豆卵磷脂Soybean lecithin | 2 | ||
维生素与矿物质预混料 Vitamin and mineral premixa | 2 | ||
氯化胆碱Choline chloride | 0.5 | ||
磷酸二氢钙 Ca(H2PO4)2 | 1.5 | ||
维生素C Vitamin C | 0.05 | ||
乙氧基喹啉Ethoxyquin | 0.03 | ||
微晶纤维素Microcrystalline cellulose | 0.4 | ||
诱食剂Attractant | 0.1 | ||
FA预混料FA premixb | 0.2 | ||
Total | 100 |
引物 Primer | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
Gal-8-F | TGATGCCGACAGGTTCCAGATAGA | 中间片段验证 Middle sequence verification |
Gal-8-R | GATGTTGACGCCCAGCAGTGT | |
UPM-long | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT | RACE通用引物 Universal primers for RACE |
UPM-short | CTAATACGACTCACTATAGGGC | |
Gal-8-5'GSP | TGCCCTCTGCGTTGGGATTG | 5'端序列克隆 5' RACE |
Gal-8-5'NGSP | GGAGGATGCCGACAGCCTGAATA | |
Gal-8-3'GSP | GAGGTGAACTGGCTGGACTGAG | 3'端序列克隆 3' RACE |
Gal-8-3'NGSP | TCAGGGTTGCTGTCAATGGGCTC | |
Gal-8-RT-F | AACACAGAGTGGACCTGGACCG | 实时荧光定量PCR Quantitative real-time PCR |
Gal-8-RT-R | CCAACACTCAGTCCTTTAGCCA | |
β-actin-F | CTCTCGGCTGTGGTGGTGAA | 内参基因 Housekeeping gene |
β-actin-R | CGTGATGGACTCTGGTGATGGT |
Table 2 Primers used in this study
引物 Primer | 序列Sequence(5'-3') | 用途 Application |
---|---|---|
Gal-8-F | TGATGCCGACAGGTTCCAGATAGA | 中间片段验证 Middle sequence verification |
Gal-8-R | GATGTTGACGCCCAGCAGTGT | |
UPM-long | CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT | RACE通用引物 Universal primers for RACE |
UPM-short | CTAATACGACTCACTATAGGGC | |
Gal-8-5'GSP | TGCCCTCTGCGTTGGGATTG | 5'端序列克隆 5' RACE |
Gal-8-5'NGSP | GGAGGATGCCGACAGCCTGAATA | |
Gal-8-3'GSP | GAGGTGAACTGGCTGGACTGAG | 3'端序列克隆 3' RACE |
Gal-8-3'NGSP | TCAGGGTTGCTGTCAATGGGCTC | |
Gal-8-RT-F | AACACAGAGTGGACCTGGACCG | 实时荧光定量PCR Quantitative real-time PCR |
Gal-8-RT-R | CCAACACTCAGTCCTTTAGCCA | |
β-actin-F | CTCTCGGCTGTGGTGGTGAA | 内参基因 Housekeeping gene |
β-actin-R | CGTGATGGACTCTGGTGATGGT |
Fig. 1 Full length cDNA nucleotide and deduced amino acid sequences of Galectin-8 in hybrid grouper The initiation codon(ATG)is underlined. The stop codon is indicated by asterisks. The carbohydrate recognition domain is highlighted by shading. The conserved motifs in the CRD domain are boxed in black color. The triangle indicates the putative site for N-linked glycosylation. The circle indicates the putative site for phosphorylation. The polyadenylation signal sequence is shown in bold italics
Fig. 3 Multiple sequence alignment of Galectin-8 amino acid sequences between hybrid grouper and other species The N-terminal and C- terminal CRDs are represented by blue and green color arrow headed lines,respectively. Conserved motifs in the CRD domain are boxed in red color;and the hinge sequences(linker peptide)of each ortholog are boxed in black color
物种Species | 氨基酸Amino acids | 一致性Identity/% | GenBank登录号GenBank accession number |
---|---|---|---|
杉虎斑 Epinephelus fuscoguttatus♀ × E.polyphekadion♂ | 319 | — | OL826837 |
鞍带石斑鱼 E. lanceolatus | 319 | 98.43 | XP_033503883.1 |
许氏平鲉 Sebastes schlegelii | 322 | 82.61 | QJD13864.1 |
条石鲷 Oplegnathus fasciatus | 313 | 79.31 | ANN46245.1 |
蓝鳍金枪鱼 Thunnus maccoyii | 313 | 75.94 | XP_042246845.1 |
罗非鱼 Oreochromis niloticus | 321 | 72.05 | XP_003446682.2 |
?鱼 Echeneis naucrates | 314 | 70.53 | XP_029352421.1 |
大西洋鲑 Salmo salar | 296 | 63.84 | NP_001133778.1 |
香鱼 Plecoglossus altivelis | 297 | 52.98 | QNB48521.1 |
黄姑鱼 Nibea albiflora | 313 | 47.48 | KAG8013601.1 |
智人 Homo sapiens | 317 | 54.09 | AAF19370.1 |
北极熊Ursus maritimus | 316 | 52.85 | XP_008687860.1 |
牛 Bos taurus | 357 | 48.44 | NP_001039419.1 |
麻雀 Passer montanus | 341 | 53.94 | XP_039562765.1 |
原鸡 Gallus gallus | 315 | 53.73 | NP_001010843.1 |
白鹭 Egretta garzetta | 317 | 52.85 | KFP20361.1 |
虎斑响尾蛇 Crotalus tigris | 297 | 49.36 | XP_039208905.1 |
眼镜王蛇 Ophiophagus hannah | 294 | 48.54 | ETE69412.1 |
热带爪蟾 Xenopus tropicalis | 315 | 49.69 | NP_001135558.1 |
中华大蟾蜍 Bufo gargarizans | 314 | 48.59 | XP_044144965.1 |
Table 3 Amino acid sequences used for multiple sequence alignment and phylogenetic tree construction for Galectin-8 from hybrid grouper
物种Species | 氨基酸Amino acids | 一致性Identity/% | GenBank登录号GenBank accession number |
---|---|---|---|
杉虎斑 Epinephelus fuscoguttatus♀ × E.polyphekadion♂ | 319 | — | OL826837 |
鞍带石斑鱼 E. lanceolatus | 319 | 98.43 | XP_033503883.1 |
许氏平鲉 Sebastes schlegelii | 322 | 82.61 | QJD13864.1 |
条石鲷 Oplegnathus fasciatus | 313 | 79.31 | ANN46245.1 |
蓝鳍金枪鱼 Thunnus maccoyii | 313 | 75.94 | XP_042246845.1 |
罗非鱼 Oreochromis niloticus | 321 | 72.05 | XP_003446682.2 |
?鱼 Echeneis naucrates | 314 | 70.53 | XP_029352421.1 |
大西洋鲑 Salmo salar | 296 | 63.84 | NP_001133778.1 |
香鱼 Plecoglossus altivelis | 297 | 52.98 | QNB48521.1 |
黄姑鱼 Nibea albiflora | 313 | 47.48 | KAG8013601.1 |
智人 Homo sapiens | 317 | 54.09 | AAF19370.1 |
北极熊Ursus maritimus | 316 | 52.85 | XP_008687860.1 |
牛 Bos taurus | 357 | 48.44 | NP_001039419.1 |
麻雀 Passer montanus | 341 | 53.94 | XP_039562765.1 |
原鸡 Gallus gallus | 315 | 53.73 | NP_001010843.1 |
白鹭 Egretta garzetta | 317 | 52.85 | KFP20361.1 |
虎斑响尾蛇 Crotalus tigris | 297 | 49.36 | XP_039208905.1 |
眼镜王蛇 Ophiophagus hannah | 294 | 48.54 | ETE69412.1 |
热带爪蟾 Xenopus tropicalis | 315 | 49.69 | NP_001135558.1 |
中华大蟾蜍 Bufo gargarizans | 314 | 48.59 | XP_044144965.1 |
Fig. 4 Phylogenetic tree of the amino sequences of Galectin-8 genes constructed by neighbour-joining method Hybrid grouper is marked with ‘●’ on the phylogenetic tree. The scale bar of 0.1 indicates genetic distance.
Fig. 5 Relative expressions of Galectin-8 in the different tissues from hybrid grouper Values are displayed as mean ± SD;values that do not share the common lowercase letters differ significantly(P < 0.05);the same below
Fig. 6 Effects of dietary supplementation of ferulic acid(FA)on the relative mRNA expressions of Galectin-8 in the liver,intestine,head kidney and spleen of hybrid grouper
[1] | Ogawa T, Watanabe M, et al. Diversified carbohydrate-binding lectins from marine resources[J]. J Amino Acids, 2011, 2011:838914. |
[2] |
da Rosa MM, de Aguiar Ferreira M, de Oliveira Lima CA, et al. Alzheimer’s disease:is there a role for galectins?[J]. Eur J Pharmacol, 2021, 909:174437.
doi: 10.1016/j.ejphar.2021.174437 URL |
[3] |
Hirabayashi J, Kasai KI. The family of metazoan metal-independent β-galactoside-binding lectins:structure, function and molecular evolution[J]. Glycobiology, 1993, 3(4):297-304.
pmid: 8400545 |
[4] |
Leffler H, Carlsson S, Hedlund M, et al. Introduction to galectins[J]. Glycoconj J, 2002, 19(7/8/9):433-440.
doi: 10.1023/B:GLYC.0000014072.34840.04 URL |
[5] |
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2021, 20(7):102847.
doi: 10.1016/j.autrev.2021.102847 URL |
[6] |
Sethi A, Sanam S, Alvala M. Non-carbohydrate strategies to inhibit lectin proteins with special emphasis on galectins[J]. Eur J Med Chem, 2021, 222:113561.
doi: 10.1016/j.ejmech.2021.113561 URL |
[7] |
Haudek KC, Patterson RJ, Wang JL. SR proteins and galectins:what’s in a name?[J]. Glycobiology, 2010, 20(10):1199-1207.
doi: 10.1093/glycob/cwq097 pmid: 20574110 |
[8] |
Rabinovich GA, Gruppi A. Galectins as immunoregulators during infectious processes:from microbial invasion to the resolution of the disease[J]. Parasite Immunol, 2005, 27(4):103-114.
pmid: 15910418 |
[9] |
Yang RY, Rabinovich GA, Liu FT. Galectins:structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10:e17.
doi: 10.1017/S1462399408000719 URL |
[10] |
Wang L, Zhang J, et al. Molecular characterization and biological function of a tandem-repeat galectin-9 in Qihe crucian carp Caras-sius auratus[J]. Fish Shellfish Immunol, 2020, 103:366-376.
doi: 10.1016/j.fsi.2020.04.054 URL |
[11] |
Zick Y, Eisenstein M, Goren RA, et al. Role of galectin-8 as a modulator of cell adhesion and cell growth[J]. Glycoconj J, 2002, 19(7/8/9):517-526.
doi: 10.1023/B:GLYC.0000014081.55445.af URL |
[12] |
Thurston TLM, Wandel MP, von Muhlinen N, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion[J]. Nature, 2012, 482(7385):414-418.
doi: 10.1038/nature10744 URL |
[13] |
Zhang TF, Jiang S, Sun L. A fish galectin-8 possesses direct bactericidal activity[J]. Int J Mol Sci, 2020, 22(1):376.
doi: 10.3390/ijms22010376 URL |
[14] | Tsai CM, Lin KI. Examination of the role of galectins in plasma cell differentiation[J]. Methods Mol Biol, 2015, 1207:153-167. |
[15] |
Tsai CM, Guan CH, Hsieh HW, et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation[J]. J Immunol, 2011, 187(4):1643-1652.
doi: 10.4049/jimmunol.1100297 URL |
[16] |
Sampson JF, Suryawanshi A, Chen WS, et al. Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFβ signaling[J]. Immunol Cell Biol, 2016, 94(2):220.
doi: 10.1038/icb.2016.8 pmid: 26857020 |
[17] |
Unajak S, Pholmanee N, Songtawee N, et al. Molecular characterization of Galectin-8 from Nile tilapia(Oreochromis niloticus Linn. )and its response to bacterial infection[J]. Mol Immunol, 2015, 68(< W>2 Pt C):585-596.
doi: 10.1016/j.molimm.2015.09.012 URL |
[18] |
Niu JZ, Huang Y, Liu XC, et al. Fish Galectin8-like exerts positive regulation on immune response against bacterial infection[J]. Front Immunol, 2020, 11:1140.
doi: 10.3389/fimmu.2020.01140 pmid: 32676073 |
[19] | 梁亚芳, 史雨红, 苗亮, 等. 大弹涂鱼(Boleophthalmus pectinirostris)gal-8L基因序列及其细菌凝集活性的鉴定[J]. 海洋与湖沼, 2018, 49(2):413-421. |
Liang YF, Shi YH, Miao L, et al. Gal-8l of mudskipper Boleophthalmus pectinirostris:characterization of the sequence and bacterial agglutination activity[J]. Oceanol Limnol Sin, 2018, 49(2):413-421. | |
[20] |
Madusanka RK, Priyathilaka TT, Janson ND, et al. Molecular, transcriptional and functional delineation of Galectin-8 from black rockfish(Sebastes schlegelii)and its potential immunological role[J]. Fish Shellfish Immunol, 2019, 93:449-462.
doi: 10.1016/j.fsi.2019.07.072 URL |
[21] |
Dong ZX, Li YR, Liu XF, et al. Molecular characterization, expression analysis and immune effect of Galectin-8 from Japanese flounder(Paralichthys olivaceus)[J]. Fish Shellfish Immunol, 2021, 111:59-68.
doi: 10.1016/j.fsi.2021.01.012 URL |
[22] |
Liang ZG, Li L, et al. Expression and antibacterial analysis of galectin-8 and-9 genes in mandarin fish, Siniperca chuatsi[J]. Fish Shellfish Immunol, 2020, 107(Pt B):463-468.
doi: 10.1016/j.fsi.2020.10.028 URL |
[23] | 陈刚, 黄建盛, 张健东, 等. 杂交石斑鱼(褐点石斑鱼♀×清水石斑鱼♂)仔、稚鱼的摄食与生长特性[J]. 水产学报, 2018, 42(11):1766-1777. |
Chen G, Huang JS, Zhang JD, et al. Feeding habits and growth characteristics of larvae and juvenile hybrid grouper(Epinephelus fuscoguttatus♀ × E. polyphekadion♂)[J]. J Fish China, 2018, 42(11):1766-1777. | |
[24] |
Fu WJ, Amenyogbe E, Yang EJ, et al. Effects of dietary supplementation of ferulic acid on growth performance, antioxidant ability, non-specific immunity, hepatic morphology and genes expression related to growth and immunity in juvenile hybrid grouper(Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂)[J]. Aquaculture, 2022, 552:737988.
doi: 10.1016/j.aquaculture.2022.737988 URL |
[25] | FAO. Fishery and Aquaculture Statistics.Global aquaculture production 1950-2019. In:FAO Fisheries Division. Rome. Updated 2021. |
[26] |
Ren ZL, Wang SF, Cai Y, et al. Effects of dietary mannan oligosaccharide supplementation on growth performance, antioxidant capacity, non-specific immunity and immune-related gene expression of juvenile hybrid grouper(Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀)[J]. Aquaculture, 2020, 523:735195.
doi: 10.1016/j.aquaculture.2020.735195 URL |
[27] |
Raissy M, Ghafarifarsani H, Hoseinifar SH, et al. The effect of dietary combined herbs extracts(oak acorn, coriander, and common mallow)on growth, digestive enzymes, antioxidant and immune response, and resistance against Aeromonas hydrophila infection in common carp, Cyprinus carpio[J]. Aquaculture, 2022, 546:737287.
doi: 10.1016/j.aquaculture.2021.737287 URL |
[28] |
Valadez-García KM, Avendaño-Reyes L, Meza-Herrera CA, et al. Ferulic acid in animal feeding:mechanisms of action, productive benefits, and future perspectives in meat production[J]. Food Biosci, 2021, 43:101247.
doi: 10.1016/j.fbio.2021.101247 URL |
[29] |
Palanisamy R, Bhatt P, Kumaresan V, et al. Innate and adaptive immune molecules of striped murrel Channa striatus[J]. Rev Aquac, 2018, 10(2):296-319.
doi: 10.1111/raq.12161 URL |
[30] |
Vallejos-Vidal E, et al. The response of fish to immunostimulant diets[J]. Fish Shellfish Immunol, 2016, 56:34-69.
doi: 10.1016/j.fsi.2016.06.028 URL |
[31] |
Vasta GR, Nita-Lazar M, Giomarelli B, et al. Structural and functional diversity of the lectin repertoire in teleost fish:relevance to innate and adaptive immunity[J]. Dev Comp Immunol, 2011, 35(12):1388-1399.
doi: 10.1016/j.dci.2011.08.011 URL |
[32] |
Sánchez-Salgado JL, et al. Participation of lectins in crustacean immune system[J]. Aquac Res, 2017, 48(8):4001-4011.
doi: 10.1111/are.13394 URL |
[33] |
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion[J]. J Cell Sci, 2012, 125:5251-5255.
doi: 10.1242/jcs.103630 pmid: 23377655 |
[34] |
Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins[J]. Semin Cell Dev Biol, 2018, 83:42-50.
doi: S1084-9521(17)30582-7 pmid: 29501720 |
[35] |
Hadari YR, Paz K, et al. Galectin-8. A new rat lectin, related to galectin-4[J]. J Biol Chem, 1995, 270(7):3447-3453.
doi: 10.1074/jbc.270.7.3447 pmid: 7852431 |
[36] | Tort L, Balasch J, MacKenzie S. Fish Immune System. A crossroads between innate and adaptive responses[J]. Inmunologia, 2003, 22(3):277-286. |
[37] |
Carbone D, Faggio C. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax[J]. Fish Shellfish Immunol, 2016, 54:172-178.
doi: 10.1016/j.fsi.2016.04.011 URL |
[38] |
Causey DR, Pohl MAN, Stead DA, et al. High-throughput proteomic profiling of the fish liver following bacterial infection[J]. BMC Genomics, 2018, 19(1):719.
doi: 10.1186/s12864-018-5092-0 pmid: 30285610 |
[39] |
Rivest S. Regulation of innate immune responses in the brain[J]. Nat Rev Immunol, 2009, 9(6):429-439.
doi: 10.1038/nri2565 pmid: 19461673 |
[40] |
Anderson DP. Immunostimulants, adjuvants, and vaccine carriers in fish:applications to aquaculture[J]. Annu Rev Fish Dis, 1992, 2:281-307.
doi: 10.1016/0959-8030(92)90067-8 URL |
[41] |
Dawood MAO, Koshio S, Esteban MÁ. Beneficial roles of feed additives as immunostimulants in aquaculture:a review[J]. Rev Aquac, 2018, 10(4):950-974.
doi: 10.1111/raq.12209 URL |
[42] |
Kilani-Jaziri S, Mokdad-Bzeouich I, et al. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids:a structure-activity relationship study[J]. Drug Chem Toxicol, 2017, 40(4):416-424.
doi: 10.1080/01480545.2016.1252919 pmid: 27855523 |
[43] |
Dawood MAO, Metwally AES, et al. The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia(Oreochromis niloticus)exposed to heat stress[J]. Aquaculture, 2020, 525:735320.
doi: 10.1016/j.aquaculture.2020.735320 URL |
[44] |
Pérez-Sánchez J, Benedito-Palos L, Estensoro I, et al. Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream(Sparus aurata L.)[J]. Fish Shellfish Immunol, 2015, 44(1):117-128.
doi: 10.1016/j.fsi.2015.01.039 URL |
[45] |
Guardiola FA, Porcino C, Cerezuela R, et al. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass(Dicentrarchus labrax)[J]. Fish Shellfish Immunol, 2016, 52:298-308.
doi: 10.1016/j.fsi.2016.03.152 URL |
[46] | Giri SS, Jun JW, Sukumaran V, et al. Dietary administration of banana(Musa acuminata)peel flour affects the growth, antioxidant status, cytokine responses, and disease susceptibility of rohu, Labeo rohita[J]. J Immunol Res, 2016, 2016:4086591. |
[1] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[2] | WANG Jia-rui, SUN Pei-yuan, KE Jin, RAN Bin, LI Hong-you. Cloning and Expression Analyses of C-glycosyltransferase Gene FtUGT143 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 204-212. |
[3] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[4] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[7] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[8] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[9] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[10] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[11] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[12] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[13] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[14] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[15] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||