Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 56-70.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0220
Previous Articles Next Articles
Received:
2023-03-14
Online:
2023-12-26
Published:
2024-01-11
Contact:
DONG Min
E-mail:hejiale@tju.edu.cn;mindong@tju.edu.cn
HE Jia-le, DONG Min. Research Progress in S-adenosyl-L-methionine Dependent 3-amino-3-carboxypropyl Utilizing Enzymes[J]. Biotechnology Bulletin, 2023, 39(12): 56-70.
名称 Name | 底物 Substrate | 反应类型 Reaction |
---|---|---|
TYW2[ | 4-去甲基丫苷 | ACP转移反应 (极性机理) |
Tsr3[ | N1-甲基假尿苷 | |
YfiP[ | 尿苷 | |
NAS[ | 氮杂环丁烷2-甲酸 | |
MtNAS[ | 谷氨酸 | |
CntL[ | 组氨酸 | |
SPDS、SPMS[ | 多胺 | |
MccD[ | 肽酰腺苷酸 | |
NAT[ | ||
BtaA[ | 二酰甘油 | |
Dph2[ | 蛋白质翻译延伸因子2 | ACP转移反应(自由基机理) |
SbzP[ | β-NAD | ACP参与的环化反应 |
ACS、GnmY、ClbH[ | 氨基环丙基-1-甲酸 | ACP自身的环化反应 |
VioH、AzeJ[ | 氮杂环丁烷2-甲酸 |
Table 1 Summary of ACP utilizing enzymes
名称 Name | 底物 Substrate | 反应类型 Reaction |
---|---|---|
TYW2[ | 4-去甲基丫苷 | ACP转移反应 (极性机理) |
Tsr3[ | N1-甲基假尿苷 | |
YfiP[ | 尿苷 | |
NAS[ | 氮杂环丁烷2-甲酸 | |
MtNAS[ | 谷氨酸 | |
CntL[ | 组氨酸 | |
SPDS、SPMS[ | 多胺 | |
MccD[ | 肽酰腺苷酸 | |
NAT[ | ||
BtaA[ | 二酰甘油 | |
Dph2[ | 蛋白质翻译延伸因子2 | ACP转移反应(自由基机理) |
SbzP[ | β-NAD | ACP参与的环化反应 |
ACS、GnmY、ClbH[ | 氨基环丙基-1-甲酸 | ACP自身的环化反应 |
VioH、AzeJ[ | 氮杂环丁烷2-甲酸 |
[1] |
Roje S. S-Adenosyl-L-methionine: beyond the universal methyl group donor[J]. Phytochemistry, 2006, 67(15): 1686-1698.
doi: 10.1016/j.phytochem.2006.04.019 pmid: 16766004 |
[2] |
Desiderio C, Cavallaro RA, De Rossi A, et al. Evaluation of chemical and diastereoisomeric stability of S-adenosylmethionine in aqueous solution by capillary electrophoresis[J]. J Pharm Biomed Anal, 2005, 38(3): 449-456.
pmid: 15925246 |
[3] |
Sun Q, Huang MY, Wei YQ. Diversity of the reaction mechanisms of SAM-dependent enzymes[J]. Acta Pharm Sin B, 2021, 11(3): 632-650.
doi: 10.1016/j.apsb.2020.08.011 pmid: 33777672 |
[4] |
Broderick JB, Duffus BR, Duschene KS, et al. Radical S-adenosylmethionine enzymes[J]. Chem Rev, 2014, 114(8): 4229-4317.
doi: 10.1021/cr4004709 pmid: 24476342 |
[5] |
Umitsu M, Nishimasu H, Noma A, et al. Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2[J]. Proc Natl Acad Sci USA, 2009, 106(37): 15616-15621.
doi: 10.1073/pnas.0905270106 pmid: 19717466 |
[6] |
Meyer B, Wurm JP, Sharma S, et al. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans[J]. Nucleic Acids Res, 2016, 44(9): 4304-4316.
doi: 10.1093/nar/gkw244 pmid: 27084949 |
[7] |
Meyer B, Immer C, Kaiser S, et al. Identification of the 3-amino-3-carboxypropyl(acp)transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs[J]. Nucleic Acids Res, 2020, 48(3): 1435-1450.
doi: 10.1093/nar/gkz1191 URL |
[8] |
Herbik A, Koch G, Mock HP, et al. Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants[J]. Eur J Biochem, 1999, 265(1): 231-239.
doi: 10.1046/j.1432-1327.1999.00717.x pmid: 10491178 |
[9] |
Dreyfus C, Lemaire D, Mari S, et al. Crystallographic snapshots of iterative substrate translocations during nicotianamine synthesis in Archaea[J]. Proc Natl Acad Sci USA, 2009, 106(38): 16180-16184.
doi: 10.1073/pnas.0904439106 pmid: 19805277 |
[10] |
Ghssein G, Brutesco C, Ouerdane L, et al. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus[J]. Science, 2016, 352(6289): 1105-1109.
doi: 10.1126/science.aaf1018 URL |
[11] |
Wu H, Min JR, Ikeguchi Y, et al. Structure and mechanism of spermidine synthases[J]. Biochemistry, 2007, 46(28): 8331-8339.
pmid: 17585781 |
[12] |
Kulikovsky A, Serebryakova M, Bantysh O, et al. The molecular mechanism of aminopropylation of peptide-nucleotide antibiotic microcin C[J]. J Am Chem Soc, 2014, 136(31): 11168-11175.
doi: 10.1021/ja505982c pmid: 25026542 |
[13] |
Reeve AM, Breazeale SD, Townsend CA. Purification, characterization, and cloning of an S-adenosylmethionine-dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis[J]. J Biol Chem, 1998, 273(46): 30695-30703.
doi: 10.1074/jbc.273.46.30695 pmid: 9804844 |
[14] |
Riekhof WR, Andre C, Benning C. Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria[J]. Arch Biochem Biophys, 2005, 441(1): 96-105.
pmid: 16095555 |
[15] |
Zhang Y, Zhu XL, Torelli AT, et al. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme[J]. Nature, 2010, 465(7300): 891-896.
doi: 10.1038/nature09138 |
[16] |
Barra L, Awakawa T, Shirai K, et al. β-NAD as a building block in natural product biosynthesis[J]. Nature, 2021, 600(7890): 754-758.
doi: 10.1038/s41586-021-04214-7 |
[17] |
Boller T, Herner RC, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid[J]. Planta, 1979, 145(3): 293-303.
doi: 10.1007/BF00454455 pmid: 24317737 |
[18] |
Hong ZL, Bolard A, Giraud C, et al. Azetidine-containing alkaloids produced by a quorum-sensing regulated nonribosomal peptide synthetase pathway in Pseudomonas aeruginosa[J]. Angew Chem Int Ed Engl, 2019, 58(10): 3178-3182.
doi: 10.1002/anie.v58.10 URL |
[19] |
Lin HN. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used?[J]. Bioorg Chem, 2011, 39(5/6): 161-170.
doi: 10.1016/j.bioorg.2011.06.001 URL |
[20] |
Blobstein SH, Grunberger D, Weinstein IB, et al. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid[J]. Biochemistry, 1973, 12(2): 188-193.
pmid: 4566585 |
[21] |
Konevega AL, Soboleva NG, Makhno VI, et al. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions[J]. RNA, 2004, 10(1): 90-101.
pmid: 14681588 |
[22] |
Waas WF, de Crécy-Lagard V, Schimmel P. Discovery of a gene family critical to wyosine base formation in a subset of phenylalanine-specific transfer RNAs[J]. J Biol Chem, 2005, 280(45): 37616-37622.
doi: 10.1074/jbc.M506939200 pmid: 16162496 |
[23] |
Suzuki Y, Noma A, Suzuki T, et al. Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA[J]. J Mol Biol, 2007, 372(5): 1204-1214.
pmid: 17727881 |
[24] |
Noma A, Kirino Y, Ikeuchi Y, et al. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA[J]. EMBO J, 2006, 25(10): 2142-2154.
doi: 10.1038/sj.emboj.7601105 pmid: 16642040 |
[25] |
Sun W, Xu XH, Pavlova M, et al. The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii[J]. Protein Sci, 2005, 14(12): 3121-3128.
doi: 10.1110/ps.051821805 URL |
[26] |
Sunita S, Tkaczuk KL, Purta E, et al. Crystal structure of the Escherichia coli 23S rRNA: m5C methyltransferase RlmI(YccW)reveals evolutionary links between RNA modification enzymes[J]. J Mol Biol, 2008, 383(3): 652-666.
doi: 10.1016/j.jmb.2008.08.062 pmid: 18789337 |
[27] |
Ihsanawati, Nishimoto M, Higashijima K, et al. Crystal structure of tRNA N2, N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii[J]. J Mol Biol, 2008, 383(4): 871-884.
doi: 10.1016/j.jmb.2008.08.068 pmid: 18789948 |
[28] |
Goto-Ito S, Ito T, Ishii R, et al. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5[J]. Proteins, 2008, 72(4): 1274-1289.
doi: 10.1002/prot.v72:4 URL |
[29] |
Enger MD, Saponara AG. Incorpo ration of 14C from[2-14C]methionine into 18S but not 28S RNA of Chinese hamster cells[J]. J Mol Biol, 1968, 33(1): 319-322.
pmid: 5646651 |
[30] |
Samarsky DA, Balakin AG, Fournier MJ. Characterization of three new snRNAs from Saccharomyces cerevisiae: snR34, snR35 and snR36[J]. Nucleic Acids Res, 1995, 23(13): 2548-2554.
pmid: 7630735 |
[31] |
Taylor AB, Meyer B, Leal BZ, et al. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site[J]. Nucleic Acids Res, 2008, 36(5): 1542-1554.
doi: 10.1093/nar/gkm1172 pmid: 18208838 |
[32] |
Wurm JP, Meyer B, Bahr U, et al. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase[J]. Nucleic Acids Res, 2010, 38(7): 2387-2398.
doi: 10.1093/nar/gkp1189 pmid: 20047967 |
[33] |
Meyer B, Wurm JP, Kötter P, et al. The Bowen-Conradi syndrome protein Nep1(Emg1)has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA[J]. Nucleic Acids Res, 2011, 39(4): 1526-1537.
doi: 10.1093/nar/gkq931 URL |
[34] |
Li ZH, Lee I, Moradi E, et al. Rational extension of the ribosome biogenesis pathway using network-guided genetics[J]. PLoS Biol, 2009, 7(10): e1000213.
doi: 10.1371/journal.pbio.1000213 URL |
[35] |
Shao ZH, Yan W, Peng JH, et al. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate[J]. Nucleic Acids Res, 2014, 42(1): 509-525.
doi: 10.1093/nar/gkt869 pmid: 24081582 |
[36] |
Ohashi Z, Maeda M, McCloskey JA, et al. 3-(3-Amino-3-carboxypropyl)uridine: a novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid[J]. Biochemistry, 1974, 13(12): 2620-2625.
pmid: 4598734 |
[37] |
Friedman S. The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function[J]. J Biol Chem, 1979, 254(15): 7111-7115.
pmid: 378998 |
[38] | Jühling F, Mörl M, Hartmann RK, et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes[J]. Nucleic Acids Res, 2009, 37(Database issue): D159-D162. |
[39] |
Kristensen I, Larsen PO. Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L. and a revised structure for nicotianamine[J]. Phytochemistry, 1974, 13(12): 2791-2798.
doi: 10.1016/0031-9422(74)80243-8 URL |
[40] |
Deinlein U, Weber M, Schmidt H, et al. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation[J]. Plant Cell, 2012, 24(2): 708-723.
doi: 10.1105/tpc.111.095000 URL |
[41] |
Haydon MJ, Kawachi M, Wirtz M, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. Plant Cell, 2012, 24(2): 724-737.
doi: 10.1105/tpc.111.095042 URL |
[42] |
Colangelo EP, Guerinot ML. Put the metal to the petal: metal uptake and transport throughout plants[J]. Curr Opin Plant Biol, 2006, 9(3): 322-330.
pmid: 16616607 |
[43] |
Ma JF, Shinada T, Matsuda C, et al. Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling[J]. J Biol Chem, 1995, 270(28): 16549-16554.
doi: 10.1074/jbc.270.28.16549 pmid: 7622460 |
[44] |
Grillet L, Schmidt W. Iron acquisition strategies in land plants: not so different after all[J]. New Phytol, 2019, 224(1): 11-18.
doi: 10.1111/nph.16005 pmid: 31220347 |
[45] |
Higuchi K, Suzuki K, Nakanishi H, et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores[J]. Plant Physiol, 1999, 119(2): 471-480.
doi: 10.1104/pp.119.2.471 pmid: 9952442 |
[46] |
Trampczynska A, Böttcher C, Clemens S. The transition metal chelator nicotianamine is synthesized by filamentous fungi[J]. FEBS Lett, 2006, 580(13): 3173-3178.
pmid: 16684531 |
[47] |
Dreyfus C, Larrouy M, Cavelier F, et al. The crystallographic structure of thermoNicotianamine synthase with a synthetic reaction intermediate highlights the sequential processing mechanism[J]. Chem Commun, 2011, 47(20): 5825-5827.
doi: 10.1039/c1cc10565e URL |
[48] |
McFarlane JS, Davis CL, Lamb AL. Staphylopine, pseudopaline, and yersinopine dehydrogenases: a structural and kinetic analysis of a new functional class of opine dehydrogenase[J]. J Biol Chem, 2018, 293(21): 8009-8019.
doi: 10.1074/jbc.RA118.002007 pmid: 29618515 |
[49] |
Lhospice S, Gomez NO, Ouerdane L, et al. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline[J]. Sci Rep, 2017, 7(1): 17132.
doi: 10.1038/s41598-017-16765-9 |
[50] |
Laffont C, Brutesco C, Hajjar C, et al. Simple rules govern the diversity of bacterial nicotianamine-like metallophores[J]. Biochem J, 2019, 476(15): 2221-2233.
doi: 10.1042/BCJ20190384 pmid: 31300464 |
[51] | Grim KP, San Francisco B, Radin JN, et al. The metallophore staphylopine enables Staphylococcus aureus to compete with the host for zinc and overcome nutritional immunity[J]. mBio, 2017, 8(5): e01281-17. |
[52] |
Ikegami F, Ongena G, Sakai R, et al. Biosynthesis of β-(isoxazolin-5-on-2-yl)-l-alanine by cysteine synthase in Lathyrus sativus[J]. Phytochemistry, 1993, 33(1): 93-98.
doi: 10.1016/0031-9422(93)85402-D URL |
[53] |
Ikegami F, Sakai R, Ishikawa T, et al. Biosynthesis in vitro of 2-(3-amino-3-carboxypropyl)-isoxazolin-5-one, the neurotoxic amino acid in Lathyrus odoratus[J]. Biol Pharm Bull, 1993, 16(7): 732-734.
pmid: 8401413 |
[54] |
Ikegami F, Murakoshi I. Enzymic synthesis of non-protein β-substituted alanines and some higher homologues in plants[J]. Phytochemistry, 1994, 35(5): 1089-1104.
doi: 10.1016/S0031-9422(00)94805-2 URL |
[55] |
Honjo T, Nishizuka Y, Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis[J]. J Biol Chem, 1968, 243(12): 3553-3555.
pmid: 4297784 |
[56] |
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution[J]. EMBO J, 2000, 19(11): 2710-2718.
pmid: 10835368 |
[57] |
Van Ness BG, Howard JB, Bodley JW. Isolation and properties of the trypsin-derived ADP-ribosyl peptide from diphtheria toxin-modified yeast elongation factor 2[J]. J Biol Chem, 1978, 253(24): 8687-8690.
pmid: 721806 |
[58] |
Dong M, Kathiresan V, Fenwick MK, et al. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis[J]. Science, 2018, 359(6381): 1247-1250.
doi: 10.1126/science.aao6595 pmid: 29590073 |
[59] |
Adams DO, Yang SF. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proc Natl Acad Sci USA, 1979, 76(1): 170-174.
doi: 10.1073/pnas.76.1.170 pmid: 16592605 |
[60] |
Ververidis P, John P. Complete recovery in vitro of ethylene-forming enzyme activity[J]. Phytochemistry, 1991, 30(3): 725-727.
doi: 10.1016/0031-9422(91)85241-Q URL |
[61] |
Huai Q, Xia Y, Chen Y, et al. Crystal structures of 1-aminocyclopropane-1-carboxylate(ACC)synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms[J]. J Biol Chem, 2001, 276(41): 38210-38216.
doi: 10.1074/jbc.M103840200 pmid: 11431475 |
[62] | Pan GH, Xu ZR, Guo ZK, et al. Discovery of the leinamycin family of natural products by mining actinobacterial genomes[J]. Proc Natl Acad Sci USA, 2017, 114(52): E11131-E11140. |
[63] |
Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103): 120-123.
doi: 10.1126/science.1224820 pmid: 22903521 |
[64] |
Healy AR, Nikolayevskiy H, Patel JR, et al. A mechanistic model for colibactin-induced genotoxicity[J]. J Am Chem Soc, 2016, 138(48): 15563-15570.
pmid: 27934011 |
[65] |
Zha L, Jiang YD, Henke MT, et al. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring[J]. Nat Chem Biol, 2017, 13(10): 1063-1065.
doi: 10.1038/nchembio.2448 pmid: 28805802 |
[66] |
Fowden L. Azetidine-2-carboxylic acid: a new constituent of plants[J]. Nature, 1955, 176(4477): 347-348.
doi: 10.1038/176347a0 |
[67] |
Burgers LD, Luong B, Li YF, et al. The natural product vioprolide A exerts anti-inflammatory actions through inhibition of its cellular target NOP14 and downregulation of importin-dependent NF-ĸB p65 nuclear translocation[J]. Biomed Pharmacother, 2021, 144: 112255.
doi: 10.1016/j.biopha.2021.112255 pmid: 34607110 |
[68] |
Yan F, Auerbach D, Chai Y, et al. Biosynthesis and heterologous production of vioprolides: rational biosynthetic engineering and unprecedented 4-methylazetidinecarboxylic acid formation[J]. Angew Chem Int Ed Engl, 2018, 57(28): 8754-8759.
doi: 10.1002/anie.v57.28 URL |
[69] |
Lai CY, Lo IW, Hewage RT, et al. Biosynthesis of complex indole alkaloids: elucidation of the concise pathway of okaramines[J]. Angew Chem Int Ed Engl, 2017, 56(32): 9478-9482.
doi: 10.1002/anie.v56.32 URL |
[70] |
Isono K, Funayama S, Suhadolnik RJ. Biosynthesis of the polyoxins, nucleoside peptide antibiotics: a new metabolic role for L-isoleucine as a precursor for 3-ethylidene-L-azetidine-2-carboxylic acid(polyoximic acid)[J]. Biochemistry, 1975, 14(13): 2992-2996.
pmid: 1156577 |
[71] |
Takahashi A, Kurasawa S, Ikeda D, et al. Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties[J]. J Antibiot, 1989, 42(11): 1556-1561.
pmid: 2584137 |
[72] |
Jänne J, Alhonen L, Pietilä M, et al. Genetic approaches to the cellular functions of polyamines in mammals[J]. Eur J Biochem, 2004, 271(5): 877-894.
pmid: 15009201 |
[73] |
Tabor CW, Tabor H. 1, 4-diaminobutane(putrescine), spermidine, and spermine[J]. Annu Rev Biochem, 1976, 45: 285-306.
pmid: 786151 |
[74] |
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism[J]. Biochem J, 2003, 376(Pt 1): 1-14.
pmid: 13678416 |
[75] |
Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34(1): 35-45.
pmid: 17356805 |
[76] |
Ikeguchi Y, Bewley MC, Pegg AE. Aminopropyltransferases: function, structure and genetics[J]. J Biochem, 2006, 139(1):1-9.
pmid: 16428313 |
[77] |
Ohnuma M, Terui Y, Tamakoshi M, et al. N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus[J]. J Biol Chem, 2005, 280(34): 30073-30082.
doi: 10.1074/jbc.M413332200 pmid: 15983049 |
[78] |
Cacciapuoti G, Porcelli M, Moretti MA, et al. The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus[J]. J Bacteriol, 2007, 189(16): 6057-6067.
pmid: 17545282 |
[79] |
Knott JM, Römer P, Sumper M. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine[J]. FEBS Lett, 2007, 581(16): 3081-3086.
doi: 10.1016/j.febslet.2007.05.074 URL |
[80] |
Hamana K, Niitsu M, Matsuzaki S, et al. Novel linear and branched polyamines in the extremely thermophilic eubacteria Thermoleophilum, Bacillus and Hydrogenobacter[J]. Biochem J, 1992, 284(Pt 3): 741-747.
doi: 10.1042/bj2840741 URL |
[81] |
Okada K, Hidese R, Fukuda W, et al. Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles[J]. J Bacteriol, 2014, 196(10): 1866-1876.
doi: 10.1128/JB.01515-14 pmid: 24610711 |
[82] |
Hidese R, Tse KM, Kimura S, et al. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine[J]. FEBS J, 2017, 284(21): 3684-3701.
doi: 10.1111/febs.14262 pmid: 28881427 |
[83] |
Guijarro JI, González-Pastor JE, Baleux F, et al. Chemical structure and translation inhibition studies of the antibiotic microcin C7[J]. J Biol Chem, 1995, 270(40): 23520-23532.
doi: 10.1074/jbc.270.40.23520 pmid: 7559516 |
[84] |
Metlitskaya A, Kazakov T, Kommer A, et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C[J]. J Biol Chem, 2006, 281(26): 18033-18042.
doi: 10.1074/jbc.M513174200 pmid: 16574659 |
[85] |
Metlitskaya A, Kazakov T, Vondenhoff GH, et al. Maturation of the translation inhibitor microcin C[J]. J Bacteriol, 2009, 191(7): 2380-2387.
doi: 10.1128/JB.00999-08 pmid: 19168611 |
[86] |
Roush RF, Nolan EM, Löhr F, et al. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7[J]. J Am Chem Soc, 2008, 130(11): 3603-3609.
doi: 10.1021/ja7101949 URL |
[1] | SUO Qing-qing, WU Nan, YANG Hui, LI Li, WANG Xi-feng. Prokaryotic Expression,Antibody Preparation and Application of Rice Caffeoyl Coenzyme A-O-methyltransferase Gene [J]. Biotechnology Bulletin, 2022, 38(8): 135-141. |
[2] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||