Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 44-53.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0720
Previous Articles Next Articles
ZHANG Hong-hong(), FANG Xiao-feng()
Received:
2023-07-27
Online:
2023-11-26
Published:
2023-12-20
Contact:
FANG Xiao-feng
E-mail:zhanghonghong@mail.tsinghua.edu.cn;xffang@mail.tsinghua.edu.cn
ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 44-53.
蛋白质 Protein | 胁迫信号 Stress signal | 分子机制 Molecular mechanism | 相分离功能 Functions of phase separation | 文献 Reference |
---|---|---|---|---|
FLOE1 | 水势 | 由DS和QPS这两个IDR施加的相反力调控LLPS | 介导水分胁迫响应,调控种子萌发 | [ |
ELF3 | 热胁迫 | PrD驱动LLPS,温度敏感性受PrD的PolyQ重复序列和ELF4的水平调节 | 高温胁迫感受器,调控植物开花 | [ |
PhyB | 光照和温度 | NTE的无序性和C末端结构寡聚化共同驱动LLPS,NTE直接感知温度信号 | 通过可逆构象转变(光控)与LLPS(温控),同时感知光照与温度 | [ |
SEU | 渗透胁迫 | LLPS取决于IDR1,IDR1的2个α-螺旋的构象变化感知大分子拥挤 | 渗透胁迫感受器,增强植物抗逆性 | [ |
RBGD2/4 | 热胁迫 | LCD富集酪氨酸提供疏水作用驱动LLPS,促进耐热相关的蛋白和转录本招募于SGs | 响应热胁迫,增强拟南芥耐热性 | [ |
NPR1 | SA | IDRs的保守半胱氨酸簇介导LLPS,形成SINCs,富集细胞死亡调控和应激响应蛋白,在各种胁迫下促进细胞存活 | 响应SA,调控细胞程序性死亡和防御反应 | [ |
GBPL3 | 生物胁迫 | 病原菌侵染诱导GBPL3的LLPS,促进GBPL3与防御相关基因启动子结合,并招募Mediator和RNAPII的组分,实现宿主防御 | 响应免疫信号,调控植物防御相关基因转录,增强抗病性。 | [ |
TMF | 氧化胁迫 | 半胱氨酸的巯基氧化,生成二硫键和IDR共同驱动LLPS | 响应氧化信号,调控番茄茎尖分生组织的成熟和开花转换 | [ |
ALBA4/5/6 | 热胁迫 | 热胁迫诱导ALBA的LLPS,协助SGs和P-bodies招募HSFmRNAs,抑制HSF mRNAs的降解 | 响应热胁迫,稳定HSF mRNAs,调控植物耐热性 | [ |
FRI | 低温 | 低温信号诱导FRI核凝聚体形成,使FRI从FLC基因上脱离,FLC反义RNA COOLAIR促进FRI凝聚体积累,稳定FRI蛋白,以快速响应温度变化 | 响应冷信号,抑制FLC表达,调控植物响应季节性温度变化 | [ |
NUP62/58/54 | 免疫信号 | N端IDR富含芳香族氨基酸驱动LLPS,决定核孔复合体选择性和渗透性,调控MPK3蛋白的核转运,参与植物抵御多种生物胁迫 | 正向调控核孔复合体中央屏障的选择性运输,控植物对病虫害的防御作用 | [ |
MED19a | 缺氮胁迫 | 在缺氮条件下,MED19a赖氨酸乙酰化水平降低调控LLPS,增强与转录因子ORE1互作以激活缺氮衰老反应基因 | 响应缺氮胁迫,调控衰老反应基因 | [ |
HEM1 | 免疫信号 | LCD驱动LLPS,形成凝聚体,隔离翻译因子,抑制免疫基因翻译 | 响应ETI,参与植物防御反应调控 | [ |
STM | 盐胁迫 | PrLD驱动LLPS,与BELL蛋白和MED8互作且共相分离 | 响应盐胁迫,增强自身转录调控活性,促进分生组织活性和耐盐性 | [ |
Table 1 Phase separation mediates stress response and plant adaptation to environment
蛋白质 Protein | 胁迫信号 Stress signal | 分子机制 Molecular mechanism | 相分离功能 Functions of phase separation | 文献 Reference |
---|---|---|---|---|
FLOE1 | 水势 | 由DS和QPS这两个IDR施加的相反力调控LLPS | 介导水分胁迫响应,调控种子萌发 | [ |
ELF3 | 热胁迫 | PrD驱动LLPS,温度敏感性受PrD的PolyQ重复序列和ELF4的水平调节 | 高温胁迫感受器,调控植物开花 | [ |
PhyB | 光照和温度 | NTE的无序性和C末端结构寡聚化共同驱动LLPS,NTE直接感知温度信号 | 通过可逆构象转变(光控)与LLPS(温控),同时感知光照与温度 | [ |
SEU | 渗透胁迫 | LLPS取决于IDR1,IDR1的2个α-螺旋的构象变化感知大分子拥挤 | 渗透胁迫感受器,增强植物抗逆性 | [ |
RBGD2/4 | 热胁迫 | LCD富集酪氨酸提供疏水作用驱动LLPS,促进耐热相关的蛋白和转录本招募于SGs | 响应热胁迫,增强拟南芥耐热性 | [ |
NPR1 | SA | IDRs的保守半胱氨酸簇介导LLPS,形成SINCs,富集细胞死亡调控和应激响应蛋白,在各种胁迫下促进细胞存活 | 响应SA,调控细胞程序性死亡和防御反应 | [ |
GBPL3 | 生物胁迫 | 病原菌侵染诱导GBPL3的LLPS,促进GBPL3与防御相关基因启动子结合,并招募Mediator和RNAPII的组分,实现宿主防御 | 响应免疫信号,调控植物防御相关基因转录,增强抗病性。 | [ |
TMF | 氧化胁迫 | 半胱氨酸的巯基氧化,生成二硫键和IDR共同驱动LLPS | 响应氧化信号,调控番茄茎尖分生组织的成熟和开花转换 | [ |
ALBA4/5/6 | 热胁迫 | 热胁迫诱导ALBA的LLPS,协助SGs和P-bodies招募HSFmRNAs,抑制HSF mRNAs的降解 | 响应热胁迫,稳定HSF mRNAs,调控植物耐热性 | [ |
FRI | 低温 | 低温信号诱导FRI核凝聚体形成,使FRI从FLC基因上脱离,FLC反义RNA COOLAIR促进FRI凝聚体积累,稳定FRI蛋白,以快速响应温度变化 | 响应冷信号,抑制FLC表达,调控植物响应季节性温度变化 | [ |
NUP62/58/54 | 免疫信号 | N端IDR富含芳香族氨基酸驱动LLPS,决定核孔复合体选择性和渗透性,调控MPK3蛋白的核转运,参与植物抵御多种生物胁迫 | 正向调控核孔复合体中央屏障的选择性运输,控植物对病虫害的防御作用 | [ |
MED19a | 缺氮胁迫 | 在缺氮条件下,MED19a赖氨酸乙酰化水平降低调控LLPS,增强与转录因子ORE1互作以激活缺氮衰老反应基因 | 响应缺氮胁迫,调控衰老反应基因 | [ |
HEM1 | 免疫信号 | LCD驱动LLPS,形成凝聚体,隔离翻译因子,抑制免疫基因翻译 | 响应ETI,参与植物防御反应调控 | [ |
STM | 盐胁迫 | PrLD驱动LLPS,与BELL蛋白和MED8互作且共相分离 | 响应盐胁迫,增强自身转录调控活性,促进分生组织活性和耐盐性 | [ |
[1] |
Solis-Miranda J, Chodasiewicz M, Skirycz A, et al. Stress-related biomolecular condensates in plants[J]. Plant Cell, 2023, 35(9): 3187-3204.
doi: 10.1093/plcell/koad127 URL |
[2] |
Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965 |
[3] |
Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology[J]. Annu Rev Cell Dev Biol, 2014, 30: 39-58.
doi: 10.1146/annurev-cellbio-100913-013325 pmid: 25288112 |
[4] |
Boeynaems S, Alberti S, Fawzi NL, et al. Protein phase separation: a new phase in cell biology[J]. Trends Cell Biol, 2018, 28(6): 420-435.
doi: S0962-8924(18)30028-X pmid: 29602697 |
[5] |
Lafontaine DLJ, Riback JA, Bascetin R, et al. The nucleolus as a multiphase liquid condensate[J]. Nat Rev Mol Cell Biol, 2021, 22(3): 165-182.
doi: 10.1038/s41580-020-0272-6 |
[6] |
Maruri-López I, Figueroa NE, Hernández-Sánchez IE, et al. Plant stress granules: trends and beyond[J]. Front Plant Sci, 2021, 12: 722643.
doi: 10.3389/fpls.2021.722643 URL |
[7] |
Xie DQ, Chen M, Niu JR, et al. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis[J]. Nat Cell Biol, 2021, 23(1): 32-39.
doi: 10.1038/s41556-020-00606-5 |
[8] |
Fang XF, Wang L, Ishikawa R, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes[J]. Nature, 2019, 569(7755): 265-269.
doi: 10.1038/s41586-019-1165-8 |
[9] |
Kim J, Lee H, Lee HG, et al. Get closer and make hotspots: liquid-liquid phase separation in plants[J]. EMBO Rep, 2021, 22(5): e51656.
doi: 10.15252/embr.202051656 URL |
[10] |
Emenecker RJ, Holehouse AS, Strader LC. Emerging roles for phase separation in plants[J]. Dev Cell, 2020, 55(1): 69-83.
doi: 10.1016/j.devcel.2020.09.010 pmid: 33049212 |
[11] |
Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176(3): 419-434.
doi: S0092-8674(18)31649-0 pmid: 30682370 |
[12] |
Gao YF, Li X, Li PL, et al. A brief guideline for studies of phase-separated biomolecular condensates[J]. Nat Chem Biol, 2022, 18(12): 1307-1318.
doi: 10.1038/s41589-022-01204-2 pmid: 36400991 |
[13] |
Li PL, Banjade S, Cheng HC, et al. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340.
doi: 10.1038/nature10879 |
[14] |
Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol, 2017, 18(5): 285-298.
doi: 10.1038/nrm.2017.7 |
[15] |
Bergeron-Sandoval LP, Safaee N, Michnick SW. Mechanisms and consequences of macromolecular phase separation[J]. Cell, 2016, 165(5): 1067-1079.
doi: S0092-8674(16)30574-8 pmid: 27203111 |
[16] |
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder[J]. Curr Opin Struct Biol, 2017, 44: 18-30.
doi: 10.1016/j.sbi.2016.10.015 URL |
[17] |
Zhang HH, Peng FY, He C, et al. Large-scale identification of potential phase-separation proteins from plants using a cell-free system[J]. Mol Plant, 2023, 16(2): 310-313.
doi: 10.1016/j.molp.2022.11.013 URL |
[18] |
Pullara P, Alshareedah I, Banerjee PR. Temperature-dependent reentrant phase transition of RNA-polycation mixtures[J]. Soft Matter, 2022, 18(7): 1342-1349.
doi: 10.1039/d1sm01557e pmid: 34984429 |
[19] |
Dao TP, Kolaitis RM, Kim HJ, et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions[J]. Mol Cell, 2018, 69(6): 965-978.e6.
doi: S1097-2765(18)30102-3 pmid: 29526694 |
[20] |
Riback JA, Katanski CD, Kear-Scott JL, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response[J]. Cell, 2017, 168(6): 1028-1040.e19.
doi: S0092-8674(17)30242-8 pmid: 28283059 |
[21] |
Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nat Commun, 2017, 8(1): 275.
doi: 10.1038/s41467-017-00480-0 pmid: 28819146 |
[22] |
Lin Y, Protter DSW, Rosen MK, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins[J]. Mol Cell, 2015, 60(2): 208-219.
doi: 10.1016/j.molcel.2015.08.018 pmid: 26412307 |
[23] |
Molliex A, Temirov J, Lee JH, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133.
doi: 10.1016/j.cell.2015.09.015 pmid: 26406374 |
[24] |
Krainer G, Welsh TJ, Joseph JA, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions[J]. Nat Commun, 2021, 12(1): 1085.
doi: 10.1038/s41467-021-21181-9 pmid: 33597515 |
[25] |
Du MJ, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling[J]. Science, 2018, 361(6403): 704-709.
doi: 10.1126/science.aat1022 pmid: 29976794 |
[26] |
Wright RHG, Le Dily F, Beato M. ATP, Mg2+, nuclear phase separation, and genome accessibility[J]. Trends Biochem Sci, 2019, 44(7): 565-574.
doi: S0968-0004(19)30053-2 pmid: 31072688 |
[27] |
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: liquid-liquid phase separation and biological condensates[J]. Curr Opin Colloid Interface Sci, 2021, 54: 101457.
doi: 10.1016/j.cocis.2021.101457 URL |
[28] |
Munder MC, Midtvedt D, Franzmann T, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy[J]. eLife, 2016, 5: e09347.
doi: 10.7554/eLife.09347 URL |
[29] |
Jin XJ, Zhou M, Chen SX, et al. Effects of pH alterations on stress- and aging-induced protein phase separation[J]. Cell Mol Life Sci, 2022, 79(7): 380.
doi: 10.1007/s00018-022-04393-0 pmid: 35750966 |
[30] |
Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast prion protein promotes cellular fitness[J]. Science, 2018, 359(6371): eaao5654.
doi: 10.1126/science.aao5654 URL |
[31] |
Adame-Arana O, Weber CA, Zaburdaev V, et al. Liquid phase separation controlled by pH[J]. Biophys J, 2020, 119(8): 1590-1605.
doi: 10.1016/j.bpj.2020.07.044 pmid: 33010236 |
[32] |
Park S, Barnes R, Lin YX, et al. Dehydration entropy drives liquid-liquid phase separation by molecular crowding[J]. Commun Chem, 2020, 3(1): 83.
doi: 10.1038/s42004-020-0328-8 pmid: 36703474 |
[33] |
Delarue M, Brittingham GP, Pfeffer S, et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding[J]. Cell, 2018, 174(2): 338-349.e20.
doi: S0092-8674(18)30654-8 pmid: 29937223 |
[34] |
Jalihal AP, Pitchiaya S, Xiao LB, et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change[J]. Mol Cell, 2020, 79(6): 978-990.e5.
doi: S1097-2765(20)30547-5 pmid: 32857953 |
[35] |
Cai DF, Feliciano D, Dong P, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression[J]. Nat Cell Biol, 2019, 21(12): 1578-1589.
doi: 10.1038/s41556-019-0433-z pmid: 31792379 |
[36] |
Yang YS, Kato M, Wu X, et al. Yeast ataxin-2 forms an intracellular condensate required for the inhibition of TORC1 signaling during respiratory growth[J]. Cell, 2019, 177(3): 697-710.e17.
doi: 10.1016/j.cell.2019.02.043 URL |
[37] |
Kato M, Yang YS, Sutter BM, et al. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain[J]. Cell, 2019, 177(3): 711-721.e8.
doi: S0092-8674(19)30227-2 pmid: 30982603 |
[38] |
Lin Y, Zhou XM, Kato M, et al. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain[J]. Proc Natl Acad Sci USA, 2020, 117(46): 28727-28734.
doi: 10.1073/pnas.2012216117 pmid: 33144500 |
[39] |
Hong K, Song D, Jung Y. Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation[J]. Nat Commun, 2020, 11(1): 5554.
doi: 10.1038/s41467-020-19391-8 pmid: 33144560 |
[40] |
Babinchak WM, Dumm BK, Venus S, et al. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation[J]. Nat Commun, 2020, 11(1): 5574.
doi: 10.1038/s41467-020-19211-z pmid: 33149109 |
[41] |
Itoh Y, Iida S, Tamura S, et al. 1, 6-hexanediol rapidly immobilizes and condenses chromatin in living human cells[J]. Life Sci Alliance, 2021, 4(4): e202001005.
doi: 10.26508/lsa.202001005 URL |
[42] |
Jung JH, Barbosa AD, Hutin S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature, 2020, 585(7824): 256-260.
doi: 10.1038/s41586-020-2644-7 |
[43] |
Hutin S, Kumita JR, Strotmann VI, et al. Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3[J]. Proc Natl Acad Sci USA, 2023, 120(28): e2304714120.
doi: 10.1073/pnas.2304714120 URL |
[44] |
Zhu SB, Gu JG, Yao JJ, et al. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis[J]. Dev Cell, 2022, 57(5): 583-597.e6.
doi: 10.1016/j.devcel.2022.02.005 URL |
[45] |
Tong JJ, Ren ZT, Sun LH, et al. ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules[J]. Nat Plants, 2022, 8(7): 778-791.
doi: 10.1038/s41477-022-01175-1 pmid: 35817823 |
[46] |
Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900.
doi: 10.1126/science.aaf5656 URL |
[47] |
Jung JH, Domijan M, Klose C, et al. Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314): 886-889.
doi: 10.1126/science.aaf6005 URL |
[48] |
Chen D, Lyu MH, Kou XX, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Mol Cell, 2022, 82(16): 3015-3029.e6.
doi: 10.1016/j.molcel.2022.05.026 pmid: 35728588 |
[49] |
Reimann TM, Müdsam C, Schachtler C, et al. The large GTPase AtGBPL3 links nuclear envelope formation and morphogenesis to transcriptional repression[J]. Nat Plants, 2023, 9(5): 766-784.
doi: 10.1038/s41477-023-01400-5 |
[50] |
Kim JH, Castroverde CDM, Huang S, et al. Increasing the resilience of plant immunity to a warming climate[J]. Nature, 2022, 607(7918): 339-344.
doi: 10.1038/s41586-022-04902-y |
[51] |
Yoo H, Triandafillou C, Drummond DA. Cellular sensing by phase separation: using the process, not just the products[J]. J Biol Chem, 2019, 294(18): 7151-7159.
doi: 10.1074/jbc.TM118.001191 pmid: 30877200 |
[52] |
Iserman C, Desroches Altamirano C, Jegers C, et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production[J]. Cell, 2020, 181(4): 818-831.e19.
doi: S0092-8674(20)30404-9 pmid: 32359423 |
[53] |
Kroschwald S, Munder MC, Maharana S, et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery[J]. Cell Rep, 2018, 23(11): 3327-3339.
doi: S2211-1247(18)30787-3 pmid: 29898402 |
[54] |
Wang BY, Zhang HH, Huai JL, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nat Chem Biol, 2022, 18(12): 1361-1369.
doi: 10.1038/s41589-022-01196-z |
[55] |
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation[J]. Cell, 2022, 185(24): 4488-4506.e20.
doi: 10.1016/j.cell.2022.09.042 pmid: 36318922 |
[56] |
Watanabe K, Morishita K, Zhou XY, et al. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose)[J]. Nat Commun, 2021, 12(1): 1353.
doi: 10.1038/s41467-021-21614-5 pmid: 33649309 |
[57] |
Morishita K, Watanabe K, Naguro I, et al. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response[J]. Cell Rep, 2023, 42(4): 112315.
doi: 10.1016/j.celrep.2023.112315 URL |
[58] |
Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, et al. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells[J]. Nat Commun, 2021, 12(1): 5438.
doi: 10.1038/s41467-021-25736-8 pmid: 34521831 |
[59] |
Huang XZ, Chen SD, Li WP, et al. ROS regulated reversible protein phase separation synchronizes plant flowering[J]. Nat Chem Biol, 2021, 17(5): 549-557.
doi: 10.1038/s41589-021-00739-0 pmid: 33633378 |
[60] |
Dorone Y, Boeynaems S, Flores E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298.e27.
doi: 10.1016/j.cell.2021.06.009 pmid: 34233164 |
[61] |
Zhang M, Zhu C, Duan YY, et al. The intrinsically disordered region from PP2C phosphatases functions as a conserved CO2 sensor[J]. Nat Cell Biol, 2022, 24(7): 1029-1037.
doi: 10.1038/s41556-022-00936-6 |
[62] |
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems[J]. Curr Opin Struct Biol, 2016, 41: 180-186.
doi: 10.1016/j.sbi.2016.08.001 URL |
[63] |
Takahara T, Maeda T. Transient sequestration of TORC1 into stress granules during heat stress[J]. Mol Cell, 2012, 47(2): 242-252.
doi: 10.1016/j.molcel.2012.05.019 pmid: 22727621 |
[64] |
Kosmacz M, Gorka M, Schmidt S, et al. Protein and metabolite composition of Arabidopsis stress granules[J]. New Phytol, 2019, 222(3): 1420-1433.
doi: 10.1111/nph.15690 pmid: 30664249 |
[65] |
Gutierrez-Beltran E, Elander PH, Dalman K, et al. Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis[J]. EMBO J, 2021, 40(17): e105043.
doi: 10.15252/embj.2020105043 URL |
[66] |
Zhang JZ, Lu TW, Stolerman LM, et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling[J]. Cell, 2020, 182(6): 1531-1544.e15.
doi: S0092-8674(20)30991-0 pmid: 32846158 |
[67] |
Frottin F, Schueder F, Tiwary S, et al. The nucleolus functions as a phase-separated protein quality control compartment[J]. Science, 2019, 365(6451): 342-347.
doi: 10.1126/science.aaw9157 pmid: 31296649 |
[68] |
Youn JY, Dyakov BJA, Zhang JP, et al. Properties of stress granule and P-body proteomes[J]. Mol Cell, 2019, 76(2): 286-294.
doi: 10.1016/j.molcel.2019.09.014 URL |
[69] |
Glauninger H, Wong Hickernell CJ, Bard JAM, et al. Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules[J]. Mol Cell, 2022, 82(14): 2544-2556.
doi: 10.1016/j.molcel.2022.05.014 pmid: 35662398 |
[70] |
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886): 657-661.
doi: 10.1038/s41586-021-04062-5 |
[71] |
Hentze N, Le Breton L, Wiesner J, et al. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1[J]. eLife, 2016, 5: e11576.
doi: 10.7554/eLife.11576 URL |
[72] |
Zhang HC, Shao SP, Zeng Y, et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock[J]. Nat Cell Biol, 2022, 24(3): 340-352.
doi: 10.1038/s41556-022-00846-7 pmid: 35256776 |
[73] |
Ayache J, Bénard M, Ernoult-Lange M, et al. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes[J]. Mol Biol Cell, 2015, 26(14): 2579-2595.
doi: 10.1091/mbc.E15-03-0136 pmid: 25995375 |
[74] |
Zhou YL, Niu RX, Tang ZJ, et al. Plant HEM1 specifies a condensation domain to control immune gene translation[J]. Nat Plants, 2023, 9(2): 289-301.
doi: 10.1038/s41477-023-01355-7 pmid: 36797349 |
[75] |
Cheng XD. Protein SUMOylation and phase separation: partners in stress?[J]. Trends Biochem Sci, 2023, 48(5): 417-419.
doi: 10.1016/j.tibs.2022.12.003 pmid: 36621339 |
[76] |
Zavaliev R, Mohan R, Chen TY, et al. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5): 1093-1108.e18.
doi: S0092-8674(20)30881-3 pmid: 32810437 |
[77] |
Guan B, Xue HW. Arabidopsis AUTOPHAGY-RELATED3(ATG3)facilitates the liquid-liquid phase separation of ATG8e to promote autophagy[J]. Sci Bull, 2022, 67(4): 350-354.
doi: 10.1016/j.scib.2021.10.012 pmid: 36546085 |
[78] |
Yasuda S, Tsuchiya H, Kaiho A, et al. Stress- and ubiquitylation-dependent phase separation of the proteasome[J]. Nature, 2020, 578(7794): 296-300.
doi: 10.1038/s41586-020-1982-9 |
[79] |
Wang JJ, Pei GF, Wang YP, et al. Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion[J]. Mol Plant, 2023, 16(6): 1016-1030.
doi: 10.1016/j.molp.2023.04.008 URL |
[80] |
Cheng SLH, Wu HW, Xu HY, et al. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence[J]. New Phytol, 2022, 236(5): 1779-1795.
doi: 10.1111/nph.18478 pmid: 36093737 |
[81] | Cao XW, Du QW, Guo YH, et al. Condensation of STM is critical for shoot meristem maintenance and salt tolerance in Arabidopsis[J]. Mol Plant, 2023: S1674-2052(23)00257. |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[10] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[11] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[12] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[13] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[14] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[15] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||