Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 275-281.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0335
Previous Articles Next Articles
ZHUANG Ke(
), LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling(
)
Received:2024-04-09
Online:2024-12-26
Published:2025-01-15
Contact:
XIE Qiu-ling
E-mail:915031762@qq.com;txql@jnu.edu.cn
ZHUANG Ke, LIANG Zhi-xuan, HE Ying-ting, XIE Qiu-ling. Transfer of Antibiotic-resistance Gene AmpR by Escherichia coli DH5α Through Outer Membrane Vesicles[J]. Biotechnology Bulletin, 2024, 40(12): 275-281.
Fig. 1 Structure of OMVs observed by transmission electron microscopy Left :OMVs of E. coli DH5α. Right :OMVs of E. coli DH5α transformed with pET-22b
Fig. 4 Detection of AmpR in OMVs by PCR 1 -3: OMVs of E. coli DH5α ; 4-6: OMVs of the pET-22b vector-E. coli DH5α; 7-9: sterile water;10-12: pET-22b vector; M: marker DL2000
Fig. 5 Co-incubation of OMVs with non-resistant E. coli DH5α A: Control group; B: 10 μg OMVs(AmpR-)group: C: 20 μg OMVs(AmpR-)group; D: 10 μg OMVs-AmpR group; E: 20 μg OMVs-AmpR group
Fig. 6 Colony by PCR 1-3: Control group; 4-6: E. coli DH5α; 7-9: E. coli DH5α transformed with pET-22b vector; 10-12: 10 μg OMVs-AmpR group; 13-15: 20 μg OMVs-AmpR group; M: marker DL 2000
| [1] |
Lalak A, Wasyl D, Zajac M, et al. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals[J]. Veterinary Microbiology, 2016, 194: 69-73.
doi: S0378-1135(16)30023-2 pmid: 26869096 |
| [2] | Jian ZH, Zeng L, Xu TJ, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control[J]. J Basic Microbiol, 2021, 61(12): 1049-1070. |
| [3] |
Sharma VK, Johnson N, Cizmas L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016, 150: 702-714.
doi: S0045-6535(15)30538-5 pmid: 26775188 |
| [4] | Tao S, Chen H, Li N, et al. The spread of antibiotic resistance genes in vivo model[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 3348695. |
| [5] | Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, et al. The antibiotic crisis: how bacterial predators can help[J]. Comput Struct Biotechnol J, 2020, 18: 2547-2555. |
| [6] | Hong J, Dauros-Singorenko P, Whitcombe A, et al. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions[J]. J Extracell Vesicles, 2019, 8(1): 1632099. |
| [7] |
Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles[J]. J Antimicrob Chemother, 2017, 72(8): 2201-2207.
doi: 10.1093/jac/dkx131 pmid: 28505330 |
| [8] | 潘琪琪, 王涓, 汪智, 等. 外膜囊泡的物质传递及细菌保护作用研究进展[J]. 微生物学报, 2024, 64(2): 364-377. |
| Pan QQ, Wang J, Wang Z, et al. Research progress in material delivery and bacterial protection of outer membrane vesicles[J]. Acta Microbiol Sin, 2024, 64(2): 364-377. | |
| [9] |
Sartorio MG, Pardue EJ, Feldman MF, et al. Bacterial outer membrane vesicles: from discovery to applications[J]. Annu Rev Microbiol, 2021, 75: 609-630.
doi: 10.1146/annurev-micro-052821-031444 pmid: 34351789 |
| [10] | Deng YQ, Xu HD, Su YL, et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis[J]. BMC Genomics, 2019, 20(1): 761. |
| [11] |
Domingues S, Nielsen KM. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Curr Opin Microbiol, 2017, 38: 16-21.
doi: S1369-5274(16)30193-X pmid: 28441577 |
| [12] |
Soler N, Marguet E, Verbavatz JM, et al. Virus-like vesicles and extracellular DNA produced by hyperthermophilic Archaea of the order Thermococcales[J]. Res Microbiol, 2008, 159(5): 390-399.
doi: 10.1016/j.resmic.2008.04.015 pmid: 18625304 |
| [13] |
Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2011, 55(7): 3084-3090.
doi: 10.1128/AAC.00929-10 pmid: 21518847 |
| [14] | Chen LJ, Jing XP, Meng DL, et al. Newly detected transmission of blaKPC-2 by outer membrane vesicles in Klebsiella pneumoniae[J]. Curr Med Sci, 2023, 43(1): 80-85. |
| [15] | Liu LN, Bilal M, Duan XG, et al. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives[J]. Sci Total Environ, 2019, 667: 444-454. |
| [16] | 刘悦, 李青超, 兰英, 等. 农业基因工程微生物及其安全性风险评价[J]. 黑龙江农业科学, 2023(7): 122-126, 136. |
| Liu Y, Li QC, Lan Y, et al. Agricultural genetically engineered microorganisms and their safety risk assessment[J]. Heilongjiang Agric Sci, 2023(7): 122-126, 136. | |
| [17] | Sanderson H, Fricker C, Brown RS, et al. Antibiotic resistance genes as an emerging environmental contaminant[J]. Environ Rev, 2016, 24(2): 205-218. |
| [18] |
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Gajendran R, et al. Horizontal transfer of antimicrobial resistance determinants among enteric pathogens through bacterial conjugation[J]. Curr Microbiol, 2019, 76(6): 666-672.
doi: 10.1007/s00284-019-01676-x pmid: 30941540 |
| [19] |
Bielaszewska M, Daniel O, Karch H, et al. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles[J]. J Antimicrob Chemother, 2020, 75(9): 2442-2451.
doi: 10.1093/jac/dkaa214 pmid: 32562546 |
| [20] | Chen GZ, Fan FF, Deng SQ, et al. Outer membrane vesicles from Escherichia coli are efficiently internalized by macrophage cells and alter their inflammatory response[J]. Microb Pathog, 2023, 175: 105965. |
| [21] | Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update[J]. J Control Release, 2020, 323: 253-268. |
| [22] |
Thoma J, Manioglu S, Kalbermatter D, et al. Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies[J]. Commun Biol, 2018, 1: 23.
doi: 10.1038/s42003-018-0027-5 pmid: 30271910 |
| [23] | Bittel M, Reichert P, Sarfati I, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo[J]. J Extracell Vesicles, 2021, 10(12): e12159. |
| [24] | Ren ZX, Zhao YY, Han S, et al. Regulatory strategies for inhibiting horizontal gene transfer of ARGs in paddy and dryland soil through computer-based methods[J]. Sci Total Environ, 2023, 856(Pt 1): 159096. |
| [25] | Jan AT. Outer membrane vesicles(OMVs)of gram-negative bacteria: a perspective update[J]. Front Microbiol, 2017, 8: 1053. |
| [26] |
Alizadeh N, Ahangarzadeh Rezaee M, Samadi Kafil H, et al. Evaluation of resistance mechanisms in carbapenem-resistant Enterobacteriaceae[J]. Infect Drug Resist, 2020, 13: 1377-1385.
doi: 10.2147/IDR.S244357 pmid: 32494169 |
| [27] |
Tashiro Y, Hasegawa Y, Shintani M, et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells[J]. Front Microbiol, 2017, 8: 571.
doi: 10.3389/fmicb.2017.00571 pmid: 28439261 |
| [28] |
Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids[J]. Plasmid, 2017, 91: 96-104.
doi: S0147-619X(16)30116-0 pmid: 28461122 |
| [29] | Smillie C, Garcillán-Barcia MP, Francia MV, et al. Mobility of plasmids[J]. Microbiol Mol Biol Rev, 2010, 74(3): 434-452. |
| [30] |
Jiang XL, Palazzotto E, Wybraniec E, et al. Automating cloning by natural transformation[J]. ACS Synth Biol, 2020, 9(12): 3228-3235.
doi: 10.1021/acssynbio.0c00240 pmid: 33231069 |
| [1] | RAO Jun, ZHAO Chen, LI Duan-hua, LIAO Hao, HUANG Jia-yu, WANG Lu. Application of Auto-induction Strategy in Ergothioneine Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(1): 333-346. |
| [2] | ZHANG Jing-an, HU Xiao-long, CAO Bei-bei, LIAO Min, SHU Chang-long, ZHANG Jie, WANG Kui, CAO Hai-qun. Construction and Characterization of Rapid Visual Expression Vector for Bacillus thuringiensis [J]. Biotechnology Bulletin, 2025, 41(1): 95-102. |
| [3] | WANG Zhou, YU Jie, WANG Jin-hua, WANG Yong-ze, ZHAO Xiao. Anaerobic Expression of Lactate Dehydrogenase to Improve the D-lactic Acid Optical Purity Procluced by Escherichia coli [J]. Biotechnology Bulletin, 2024, 40(5): 290-299. |
| [4] | YANG Hong-yan, HAN Xiao, YANG Jian-jun. Scaling up Production of pDNA Plasmids in Disposable Bioreactors [J]. Biotechnology Bulletin, 2024, 40(1): 168-175. |
| [5] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
| [6] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
| [7] | WU Li-dan, RAN Xue-qin, NIU Xi, HUANG Shi-hui, LI Sheng, WANG Jia-fu. Genome Comparison and Virulence Factor Analysis of Pathogenic Escherichia coli from Porcine [J]. Biotechnology Bulletin, 2023, 39(12): 287-299. |
| [8] | LI Yi-ya, WU Yi-fan, DING Neng-shui, FAN Xiao-ping, CHEN Fan. Establishment of a Luciferase-assisted Quantitative Method for Measuring Ultrasonic Disruption of Escherichia coli Cells [J]. Biotechnology Bulletin, 2023, 39(12): 90-98. |
| [9] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
| [10] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
| [11] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
| [12] | ZHAO Yan-kun, LIU Hui-min, MENG Lu, WANG Cheng, WANG Jia-qi, ZHENG Nan. Research Progress in Heteroresistance of Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(9): 59-71. |
| [13] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
| [14] | LU Xin-hua, SUN De-quan, ZHANG Xiu-mei. Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles [J]. Biotechnology Bulletin, 2022, 38(7): 194-204. |
| [15] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||