Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 82-91.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0029
Previous Articles Next Articles
YUE Xin-yu1,2(
), JI Wen-na1,2, ZHOU Jin-yu1,2, JIN Li-wu1,2, YANG Di1,2,3, LIU Zhen-bin1,2,3, SUN Na1,2,3, QIAO Zi-lin1,2,3, MA Zhong-ren1,2,3, WANG Jia-min1,2,3(
)
Received:2025-01-08
Online:2025-08-26
Published:2025-08-14
Contact:
WANG Jia-min
E-mail:2750078375@qq.com;287132290@xbmu.edu.cn
YUE Xin-yu, JI Wen-na, ZHOU Jin-yu, JIN Li-wu, YANG Di, LIU Zhen-bin, SUN Na, QIAO Zi-lin, MA Zhong-ren, WANG Jia-min. Research Progress in HEK293 Cell Suspension Culture Technology and Its Application[J]. Biotechnology Bulletin, 2025, 41(8): 82-91.
获批时间 Approval date | 产品名 Product name | 上市公司 Listed company | 地区 Region | 批准部门 Approving department | 预防病毒 Prevention viruses |
|---|---|---|---|---|---|
| 2017 | Ad5-EBOV | 康希诺生物科技股份有限公司 | 中国 | 中国国家药品监督管理局 | 埃博拉病毒 |
| 2019 | Ad26.ZEBOV | 强生公司 | 欧盟 | 欧洲药品管理局 | 埃博拉病毒 |
| 2020 | ChAdOx1-S | 牛津大学和阿斯利康 | 英国 | 美国药品管理局 | 新型冠状病毒 |
| 2020 | AZD1222 | 阿斯利康 | 英国 | 英国药品和健康产品监管局 | 新型冠状病毒 |
| 2021 | CONVIDECIA | 康希诺生物科技股份有限公司 | 中国 | 中国国家药品监督管理局 | 新型冠状病毒 |
| 2021 | Ad26.COV2.S COVID-19 | 强生公司 | 美国 | 美国食品药品监督管理局 | 新型冠状病毒 |
Table 1 Production of adenovirus vectored vaccines from HEK293 cells
获批时间 Approval date | 产品名 Product name | 上市公司 Listed company | 地区 Region | 批准部门 Approving department | 预防病毒 Prevention viruses |
|---|---|---|---|---|---|
| 2017 | Ad5-EBOV | 康希诺生物科技股份有限公司 | 中国 | 中国国家药品监督管理局 | 埃博拉病毒 |
| 2019 | Ad26.ZEBOV | 强生公司 | 欧盟 | 欧洲药品管理局 | 埃博拉病毒 |
| 2020 | ChAdOx1-S | 牛津大学和阿斯利康 | 英国 | 美国药品管理局 | 新型冠状病毒 |
| 2020 | AZD1222 | 阿斯利康 | 英国 | 英国药品和健康产品监管局 | 新型冠状病毒 |
| 2021 | CONVIDECIA | 康希诺生物科技股份有限公司 | 中国 | 中国国家药品监督管理局 | 新型冠状病毒 |
| 2021 | Ad26.COV2.S COVID-19 | 强生公司 | 美国 | 美国食品药品监督管理局 | 新型冠状病毒 |
产品名 Product name | 性能 Property | 针对疾病 Targeted diseases | 获批时间 Approved date | 生产公司 Producting company |
|---|---|---|---|---|
| Zolgensma® | 基于AAV的SMN基因疗法 | 脊髓性肌萎缩症 | 2019 | 诺华 |
| Breyanzi® | CD19定向CART疗法 | 大B细胞淋巴瘤 | 2021 | 百时美施贵宝 |
| Abecma® | BCMA定向CART疗法 | 多发性骨髓瘤 | 2021 | 百时美施贵宝 |
Table 2 Three gene therapy products approved by the FDA
产品名 Product name | 性能 Property | 针对疾病 Targeted diseases | 获批时间 Approved date | 生产公司 Producting company |
|---|---|---|---|---|
| Zolgensma® | 基于AAV的SMN基因疗法 | 脊髓性肌萎缩症 | 2019 | 诺华 |
| Breyanzi® | CD19定向CART疗法 | 大B细胞淋巴瘤 | 2021 | 百时美施贵宝 |
| Abecma® | BCMA定向CART疗法 | 多发性骨髓瘤 | 2021 | 百时美施贵宝 |
| [1] | Longjohn MN, Phan HD, Christian SL. Culturing suspension cancer cell lines [J]. Methods Mol Biol, 2022, 2508: 9-17. |
| [2] | Alonso F, Spuul P, Génot E. Podosomes in endothelial cell—microenvironment interactions [J]. Curr Opin Hematol, 2020, 27(3): 197-205. |
| [3] | Tsao YS, Condon R, Schaefer E, et al. Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells [J]. Cytotechnology, 2001, 37(3): 189-198. |
| [4] | Teng TT, Chen PL, Weng TC, et al. Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells [J]. J Biomed Sci, 2020, 27(1): 47. |
| [5] | Moço PD, Xu XG, Silva CAT, et al. Production of adeno-associated viral vector serotype 6 by triple transfection of suspension HEK293 cells at higher cell densities [J]. Biotechnol J, 2023, 18(9): e2300051. |
| [6] | Masuda K, Kubota M, Nakazawa Y, et al. Establishment of a novel cell line, CHO-MK, derived from Chinese Hamster ovary tissues for biologics manufacturing [J]. J Biosci Bioeng, 2024, 137(6): 471-479. |
| [7] | Foster AE, Forrester K, Gottlieb DJ, et al. Large-scale expansion of cytomegalovirus-specific cytotoxic T cells in suspension culture [J]. Biotechnol Bioeng, 2004, 85(2): 138-146. |
| [8] | Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model [J]. Proc Natl Acad Sci USA, 2000, 97(25): 13714-13719. |
| [9] | Qiao CP, Wang B, Zhu XD, et al. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines [J]. J Virol, 2002, 76(24): 13015-13027. |
| [10] | Jalšić L, Lytvyn V, Elahi SM, et al. Inducible HEK293 AAV packaging cell lines expressing Rep proteins [J]. Mol Ther Methods Clin Dev, 2023, 30: 259-275. |
| [11] | Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5 [J]. J Gen Virol, 1977, 36(1): 59-74. |
| [12] | Berk AJ. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus [J]. Oncogene, 2005, 24(52): 7673-7685. |
| [13] | Bylund L, Kytölä S, Lui WO, et al. Analysis of the cytogenetic stability of the human embryonal kidney cell line 293 by cytogenetic and STR profiling approaches [J]. Cytogenet Genome Res, 2004, 106(1): 28-32. |
| [14] | Lin YC, Boone M, Meuris L, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations [J]. Nat Commun, 2014, 5: 4767. |
| [15] | Hu JW, Han JZ, Li HR, et al. Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology [J]. Cells Tissues Organs, 2018, 205(1): 1-8. |
| [16] | Tan E, Chin CSH, Lim ZFS, et al. HEK293 cell line as a platform to produce recombinant proteins and viral vectors [J]. Front Bioeng Biotechnol, 2021, 9: 796991. |
| [17] | McCue J, Kshirsagar R, Selvitelli K, et al. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein [J]. Biologicals, 2015, 43(4): 213-219. |
| [18] | Pham PL, Perret S, Doan HC, et al. Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency [J]. Biotechnol Bioeng, 2003, 84(3): 332-342. |
| [19] | Campbell AC, Tanner JJ, Krause KL. Optimisation of neuraminidase expression for use in drug discovery by using HEK293-6E cells [J]. Viruses, 2021, 13(10): 1893. |
| [20] | Carter J, Zhang J, Dang TL, et al. Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells [J]. Protein Sci, 2010, 19(2): 357-362. |
| [21] | Yuan J, Xu WW, Jiang S, et al. The scattered twelve tribes of HEK293 [J]. Biomed Pharmacol J, 2018, 11(2): 621-623. |
| [22] | Kim JK, Lim GM, Kim EJ, et al. Generation of recombinant antibodies in HEK293F cells for the detection of Staphylococcus aureus [J]. ACS Omega, 2022, 7(11): 9690-9700. |
| [23] | Dai DP, Geng PW, Cai J, et al. 293FT is a highly suitable mammalian cell line for the in vitro enzymatic activity analysis of typical P450 proteins [J]. Pharmazie, 2015, 70(1): 33-37. |
| [24] | Brueggemann LI, Sullivan JM. HEK293S cells have functional retinoid processing machinery [J]. J Gen Physiol, 2002, 119(6): 593-612. |
| [25] | Reeves PJ, Callewaert N, Contreras R, et al. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line [J]. Proc Natl Acad Sci USA, 2002, 99(21): 13419-13424. |
| [26] | 张良艳, 姚志东, 邢丽, 等. MDCK细胞的悬浮驯化及初步应用 [J]. 生物技术通讯, 2013, 24(3): 382-384. |
| Zhang LY, Yao ZD, Xing L, et al. Conversion of MDCK cell line to suspension culture and its appli cation for influenza virus production [J]. Lett Biotechnol, 2013, 24(3): 382-384. | |
| [27] | Dai XF, Miao YJ, Han PY, et al. PABPC1 enables cells with the suspension cultivation feature [J]. ACS Synth Biol, 2021, 10(2): 309-317. |
| [28] | Lohr V, Genzel Y, Behrendt I, et al. A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor [J]. Vaccine, 2010, 28(38): 6256-6264. |
| [29] | Jang M, Pete ES, Bruheim P. The impact of serum-free culture on HEK293 cells: From the establishment of suspension and adherent serum-free adaptation cultures to the investigation of growth and metabolic profiles [J]. Front Bioeng Biotechnol, 2022, 10: 964397. |
| [30] | Chu CA, Lugovtsev V, Golding H, et al. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production [J]. Proc Natl Acad Sci USA, 2009, 106(35): 14802-14807. |
| [31] | Park S, Kim JY, Ryu KH, et al. Production of a foot-and-mouth disease vaccine antigen using suspension-adapted BHK-21 cells in a bioreactor [J]. Vaccines, 2021, 9(5): 505. |
| [32] | Sakib S, Dores C, Rancourt D, et al. Use of stirred suspension bioreactors for male germ cell enrichment [J]. Methods Mol Biol, 2016, 1502: 111-118. |
| [33] | Monteil D, Kuan J. Bench-scale stirred-tank bioreactor for recombinant protein production in Chinese Hamster ovary (CHO) cells in suspension [J]. Methods Mol Biol, 2024, 2810: 235-247. |
| [34] | Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells [J]. J Biotechnol, 2017, 251: 128-140. |
| [35] | Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture [J]. ALTEX, 2003, 20(4): 275-281. |
| [36] | Eberhardt F, Hückelhoven-Krauss A, Kunz A, et al. Impact of serum-free media on the expansion and functionality of CD19.CAR T-cells [J]. Int J Mol Med, 2023, 52(1): 58. |
| [37] | Burgos R, Garcia-Ramallo E, Shaw D, et al. Development of a serum-free medium to aid large-scale production of Mycoplasma-based therapies [J]. Microbiol Spectr, 2023, 11(3): e0485922. |
| [38] | Keenan J, Horgan K, Clynes M, et al. Unexpected fluctuations of trace element levels in cell culture medium in vitro: caveat emptor [J]. In Vitro Cell Dev Biol Anim, 2018, 54(8): 555-558. |
| [39] | Loignon M, Perret S, Kelly J, et al. Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells [J]. BMC Biotechnol, 2008, 8: 65. |
| [40] | Li WF, Fan ZL, Lin Y, et al. Serum-free medium for recombinant protein expression in Chinese Hamster ovary cells [J]. Front Bioeng Biotechnol, 2021, 9: 646363. |
| [41] | Wang PP, Huang SL, Hao CW, et al. Establishment of a suspension MDBK cell line in serum-free medium for production of bovine alphaherpesvirus-1 [J]. Vaccines, 2021, 9(9): 1006. |
| [42] | Biaggio RT, Abreu-Neto MS, Covas DT, et al. Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation [J]. Bioprocess Biosyst Eng, 2015, 38(8): 1495-1507. |
| [43] | Zhou GJ, Lv XJ, Zhong XR, et al. Suspension culture strategies to enrich colon cancer stem cells [J]. Oncol Lett, 2023, 25(3): 116. |
| [44] | Hsiao B, Khan A, Kang I. Vaccinations and biologics [J]. Infect Dis Clin North Am, 2020, 34(2): 425-450. |
| [45] | Petiot E, Cuperlovic-Culf M, Shen CF, et al. Influence of HEK293 metabolism on the production of viral vectors and vaccine [J]. Vaccine, 2015, 33(44): 5974-5981. |
| [46] | Rowe WP, Huebner RJ, Gilmore LK, et al. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture [J]. Proc Soc Exp Biol Med, 1953, 84(3): 570-573. |
| [47] | Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors [J]. Vaccine, 2006, 24(7): 849-862. |
| [48] | Wang S, Liang B, Wang WQ, et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases [J]. Signal Transduct Target Ther, 2023, 8(1): 149. |
| [49] | Toro H, Tang DC, Suarez DL, et al. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector [J]. Vaccine, 2007, 25(15): 2886-2891. |
| [50] | Nair H, Abdullah Brooks W, Katz M, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis [J]. Lancet, 2011, 378(9807): 1917-1930. |
| [51] | Zhou XY, Xiang ZQ, Ertl HCJ. Vaccine design: replication-defective adenovirus vectors [J]. Methods Mol Biol, 2016, 1404: 329-349. |
| [52] | Falsey AR, Williams K, Gymnopoulou E, et al. Efficacy and safety of an Ad26.RSV.preF-RSV preF protein vaccine in older adults [J]. N Engl J Med, 2023, 388(7): 609-620. |
| [53] | Arjmand B, Alavi-Moghadam S, Payab M, et al. GMP-compliant adenoviral vectors for gene therapy [J]. Methods Mol Biol, 2021, 2286: 237-250. |
| [54] | Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector [J]. Mol Ther, 2016, 24(2): 287-297. |
| [55] | 王大宁, 刘亚静, 郑清炳, 等. 悬浮驯化HEK-293FT细胞表达人乳头瘤病毒16型假病毒及其冷冻电镜结构解析 [J]. 病毒学报, 2016, 32(5): 551-559. |
| Wang DN, Liu YJ, Zheng QB, et al. Preparation and cryo-EM structure determination of human papillomavirus 16 pseudovirion derived from suspension-adapted HEK293 cells [J]. Chin J Virol, 2016, 32(5): 551-559. | |
| [56] | Puente-Massaguer E, Cajamarca-Berrezueta B, Volart A, et al. Transduction of HEK293 cells with BacMam baculovirus is an efficient system for the production of HIV-1 virus-like particles [J]. Viruses, 2022, 14(3): 636. |
| [57] | Abaandou L, Quan D, Shiloach J. Affecting HEK293 cell growth and production performance by modifying the expression of specific genes [J]. Cells, 2021, 10(7): 1667. |
| [58] | Jaluria P, Betenbaugh M, Konstantopoulos K, et al. Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog [J]. BMC Biotechnol, 2007, 7: 71. |
| [59] | Pitchakarn P, Ting P, Buacheen P, et al. Multi-endpoint toxicological assessment of chrysin loaded oil-in-water emulsion system in different biological models [J]. Nanomaterials, 2024, 14(12): 1001. |
| [60] | Liu SJ, Li JZ, Peraramelli S, et al. Systematic comparison of rAAV vectors manufactured using large-scale suspension cultures of Sf9 and HEK293 cells [J]. Mol Ther, 2024, 32(1): 74-83. |
| [61] | Egbuna O, Zimmerman B, Manos G, et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants [J]. N Engl J Med, 2023, 388(11): 969-979. |
| [62] | Malm M, Kuo CC, Barzadd MM, et al. Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins [J]. Metab Eng, 2022, 72: 171-187. |
| [63] | Pulix M, Lukashchuk V, Smith DC, et al. Molecular characterization of HEK293 cells as emerging versatile cell factories [J]. Curr Opin Biotechnol, 2021, 71: 18-24. |
| [64] | Wang YY, Hsu SH, Tsai HY, et al. Transcriptomic and proteomic analysis of CRISPR/Cas9-mediated ARC-knockout HEK293 cells [J]. Int J Mol Sci, 2022, 23(9): 4498. |
| [65] | Yuen KS, Chan CP, Wong NM, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells [J]. J Gen Virol, 2015, 96(Pt 3): 626-636. |
| [66] | Chin CL, Goh JB, Srinivasan H, et al. A human expression system based on HEK293 for the stable production of recombinant erythropoietin [J]. Sci Rep, 2019, 9(1): 16768. |
| [1] | LI Rui-rui, NA Dao-yuan, WANG Hong-lin, ZHAO Liang, TAN Wen-Song, YE Qian. Rational Design of Recombinant Adeno-associated Virus Transient Expressing System and Establishment of Its Efficient Production Process [J]. Biotechnology Bulletin, 2024, 40(12): 61-71. |
| [2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
| [3] | CAI Dong-mei, GONG Guo-li. The Current Status and Future Perspectives of Production of Biopharmaceuticals in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(8): 34-40. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||