[1] Li JY, Liu XD, Zhou W. Study on the new technology of crop breeding on available utilizing phosphate in soils[J]. Sciences in China(Ser B), 1995, 25:41-48. [2] 沈善敏.中国土壤肥力[M].北京:中国农业出版社, 1998:212-273. [3] Raghothama KG. Phosphate acquisition[J]. Plant Mol Biol, 1999, 50:665-693. [4] Sanchez PA, Salinas JG. Low input technology for managing oxisols and ultisols in tropical[J]. America Adv Agron, 1981, 34:279-406 [5] 李伟, 印莉萍. 基因组学相关概念及其研究进展[J]. 生物学通报, 2000, 35(11):1-3. [6] 解涛, 梁卫平, 丁达夫. 后基因组时代的基因组功能注释[J].生物化学与生物物理进展, 2000, 27(2):166-170. [7] Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Charac-terization of low phosphorus insen-sitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency[J]. Plant Physiol, 2006, 140:879-889. [8] Bates TR, Lynch JP. Root hairs confer a competitive advantage under low phosphorus availability[J]. Plant Soil, 2001, 236:243-250. [9] 邢国芳. 植物根系发育及其激素调控机理[M]. 北京:中国农业科学技术出版社, 2012:84-92. [10] 严小龙, 廖红, 戈振扬, 等. 植物根构型特性与磷吸收效率[J]. 植物学通报, 2000, 171(6):511-519. [11] Osmont KS, Sibout R, Hardtke CS. Hidden branches:developm-ents in root system architecture[J]. Ann Rev Plant Biol, 2007, 58:93-113. [12] Desnos T. Root branching responses to phosphate and nitrate[J]. Curr Opin Plant Biol, 2008, 11:82-87. [13] Chapin FS. The mineral nutrition of wild plants[J]. Ann Rev Ecol Syst, 1980, 11:233-260. [14] Hammond JP, Bennett MJ, Bowen HC. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing[J]. Plant Physiology, 2003, 132:578-596. [15] Keerthisinghe G, Hocking PJ, Ryan PR, et al. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin(Lupinus albus L.)[J]. Plant Cell Environ, 1998, 21:467-478. [16] Neumann G, Massonneau A, Martinoia E, et al. Physiological adap-tation to phosphorus deficiency during proteoid root development in white lupin[J]. Planta, 1999, 208:373-382. [17] Morcuende R, Bari RP, Gibon Y, et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus[J]. Plant Cell and Environt, 2007, 30(1):85-112. [18] Wasaki J, Shinano T, Onishi K, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J]. Jour of Expe Bota, 2006, 57(9):2049-2059. [19] Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, et al. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant-and species-specific levels[J]. J Exp Bot, 2008, 59:2479-2497. [20] Hernández G, Ramírez M, Valdés-López O, et al. Phosphorus stress in common bean:root transcript and metabolic responses[J]. Plant Physiol, 2007, 144:752-767. [21] Wu P, Ma LG, Hou XL. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves[J]. Plant Physiology, 2003, 132:260-1271. [22] Misson J, Raghothama KG, Jain A. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetix gene chips determined plantresponses to phosphate deprivation[J]. Proc Natl Acad Sci, 2005, 102(33):11934-11939. [23] Wasaki J, Yamamura T, Shinano T, et al. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J]. Plant & Soil, 2003, 248:129-136. [24] Li KP, Xu ZP, Zhang KW, et al. Efficient production and characterization for maize inbred lines with low-phosphorus tolerance[J]. Plant Sci, 2007, 172:255-264. [25] Li KP, Xu CZ, Li ZX, et al. Comparative proteome analyses of phosphorus responses in maize(Zea mays L.)roots of wild-type and low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency[J]. Plant J, 2008, 55:927-939. [26] 冯万军, 李振兴, 郭宝健, 等. 小麦磷饥饿前后根系蛋白质组差异表达蛋白谱建立及差异表达蛋白的鉴定[J]. 作物学报, 2012, 38(5):780-790. [27] Uta P, Scott K, Christophe R, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2002, 99:13324-13329. [28] Li ZX, Gao Q, Liu YZ, et al. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth[J]. Planta, 2011, 233:1129-1143. [29] Thibaud MC, Arrighi JF, Bayle V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis[J]. Plant J, 2010, 64:775-789. [30] Wu P, Wang X. Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice(Oryza sativa L.)[J]. Plant Signal Behav, 2008, 3:674-675. [31] Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcr-iption factor is a modulator of phosphate acquisition and root develo-pment in Arabidopsis[J]. Plant Physiol, 2007, 143:1789-1801. [32] Devaiah BN, Nagarajan VK, Raghothama KG. Phosphate homeost-asis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J]. Plant Physol, 2007, 145:147-159. [33] Chen ZH, Nimmo GA, Jenkins GI, et al. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J]. Biochem J, 2007, 405:191-198. [34] Bariola PA, Howard CJ, Taylor CB, et al. The Arabidopsis ribonuc-lease gene RNS1 is tightly controlled in response to phosphate limi-tation[J]. Plant J, 1994, 6:673-685. [35] Schachtman DP, Shin R. Nutrient sensing and signaling:NPKS[J]. Annual Review of Plant Biology, 2007, 58:47-69. [36] Zhou J, Jiao FC, Wu ZC, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiol, 2008, 146(4):1673-1686. [37] Miura K, Rus A, Sharkhuu A, et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J]. Proc Natl Acad Sci USA, 2005, 102:7760-7764. [38] Aung K, Lin SI, Wu CC, et al. Pho2, a phospha over accumulator, is caused by a nonsense mutation in a microRNA399 target gene[J]. Plant Physiol, 2006, 141:1000-1011. [39] Bari R, Pant BD, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiol, 2006, 141:988-999. [40] Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 18:412-421. [41] Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant J, 2008, 53:731-738. [42] Shin H, Shin HS, Chen R, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. Plant J, 2006, 45(5):712-726. [43] Pant BD, Musialak-lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing[J]. Plant Physiol, 2009, 150:1541-1555. [44] Hu B, Zhu CG, Li F, et al. LEAF TIP NECROSIS 1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiol, 2011, 156(3):1101-1115. [45] Martin AC, del Pozo JC, lglesias J. Influnce of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant J, 2000, 24(5):559-567. [46] Wang XM, Yi KK, Tao Y, et al. Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level[J]. Plant Cell and Environment, 2006, 29:1924-1935. [47] López-Bucio J, Hernandez-Abreu E, Sunchez-Calderon L, et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J]. Plant Physiology, 2002, 129:244-256. [48] 徐中平. 低磷胁迫对玉米磷吸收、转运及IAA和CTK水平与分布的影响[D]. 济南:山东大学, 2008:69-86. [49] Borch K, Bouma TJ, Lynch JP, et al. Ethylene:a regulator of root architectural responses to soil phosphorus availability[J]. Plant Cell and Environment, 1999, 22:425-431. [50] Ma Z, Baskin TI, Brown KM, et al. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiven-ess[J]. Plant Physiology, 2003, 131:1381-1390. |