Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (10): 6-11.
• Review • Previous Articles Next Articles
Xue Xin1,Zhang Qian2, Wu Jinxia2,
Received:
2013-04-26
Online:
2013-10-14
Published:
2013-10-15
Xue Xin, Zhang Qian, Wu Jinxia,. Research of Reactive Oxygen Species in Plants and Its Application on Stress Tolerance[J]. Biotechnology Bulletin, 2013, 0(10): 6-11.
[1] 方允中, 李文杰. 自由基与酶: 基础理论及其在生物学和医学中的应用[M]. 北京: 科学出版社, 1989 :147. [2]Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3):1143-1151. [3]Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Biology, 1998, 49(1):199-222. [4]Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J]. Nature, 2000, 406(6797):731-734. [5]Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Biol, 1992, 43(1):83-116. [6] 邱嵘, 郑荣梁. 活性氧信号传导作用的研究进展[J]. 生物化学与生物物理进展, 2001, 28(3):287-288. [7] 钱易. 水体颗粒物和难降解有机物的特性与控制技术原理[M]. 北京: 中国环境科学出版社, 2000 :6. [8] 朱琳娜, 吴超, 何争光. Fenton 试剂法处理难生物降解有机废水最新进展[J]. 能源技术与管理, 2006(2):59-62. [9] 李金莲, 金永峰, 钱慧娟. Fenton 试剂在水处理中的应用研究[J]. 化工科技市场, 2006, 29(6):28-33. [10] 陈琳, 杜瑛, 雷乐成. UV/H2O2 光化学氧化降解对氯苯酚废水的反应动力学[J]. 环境科学, 2003, 24(5):106-109. [11]Liszkay A, van der Zalm E, Schopfer P. Production of reactive-oxygen intermediates(O2 , H2O2 and?OH)by maize roots and their role in wall loosening and elongation growth[J]. Plant Physiol, 2004, 136 :3114-3123. [12]Cruz de Carvalho MH. Drought stress and reactive oxygen species : production, scavenging and signaling[J]. Plant Signal Behav, 2008, 3 :156-165. [13]Foyer CH, Descourvières P, Kunert KJ. Protection against oxygen radicals :An important defence mechanism studied in transgenic plants[J]. Plant Cell Environ, 1994, 17 :507-523. [14]Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiol Plant, 2003, 119 :355-364. [15]Dat J, et al. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci, 2000, 57 :779-795. [16]Elstner EF. Mechanisms of oxygen activation in different compartments of plant cells[J]. Current Topics in Plant Physiology, 1991, 6 :13-25. [17]Torres MA, Dangl JL. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development[J]. Current Opinion in Plant Biology, 2005, 8(4):397-403. [18]Carol RJ, Dolan L. The role of reactive oxygen species in cell growth :lessons from root hairs[J]. J Exp Bot, 2006, 57 :18291834. [19]Bolwell GP, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defense broad perspective[J]. Physiol Mol Plant Pathol, 1997, 51 :347-366. [20]Keilis-Borok VI, Knopoff L, Rotwain IM, et al. Intermediate-term prediction of occurrence times of strong earthquakes[J]. Nature, 1988, 335(6192):690-694. [21]McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein(hemocuprein)[J]. J Biol Chem, 1969, 244 (22):6049-6055. [22]Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs)in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53 :1331-1341. [23] 杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学, 2001, 17(2):121-125. [24]Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism[J]. Plant Physiol, 2001, 126 :1055-1060. [25]Yu H, Chen X, Hong YY, et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density[J]. The Plant Cell, 2008, 20(4):1134-1151. [26]Bishop NI, Urbig T, Senger H. Complete separation of the β, ε-and β, β-carotenoid biosynthetic pathways by a unique mutation of the lycopene cyclase in the green alga, Scenedesmus obliquus[J]. FEBS Letters, 1995, 367(2):158-162. [27]Norris SR, Shen X, Della PD. Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase[J]. Plant Physiology, 1998, 117(4):1317-1323. [28]Quan LJ, Zhang B, Shi WW, et al. Hydrogen peroxide in plants :a versatile molecule of the reactive oxygen species network[J]. J Integr Plant Biol, 2008, 50 :2-18. [29]Sinhababu A, Kar RK. Response of four fuel-wood yielding seedlings to water stress[J]. Plant Physiol, 2002, 7 :88-91. [30]Sinhababu A, Kar RK. Comparative responses of three fuel-wood yielding plants to PEG-induced water stress at seedling stage[J]. Acta Physiol Plant, 2003, 25 :403-409. [31]Sinhababu A, Banerjee A, Kar RK. Assessment of tolerance to water stress at seedling stage of four fuel wood yielding legumes[J]. Theoret Exp Biol, 2004, 1 :10-16. [32] 孟慧, 张霞, 等. 转录因子ABP9 基因过表达对植物生长发育的影响分析[J]. 中国农学通报, 2007, 23(6):94-98. [33]Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses[J]. Plant Physiology, 2005, 139(2):566-573. [34]Pérez-Torres E, Paredes M, Polanco V, et al. Gene expression analysis :a way to study tolerance to abiotic stresses in crops species[J]. Chilean J Agric Res, 2009, 69 :260-269. [35]Wang BC, et al. Identification and quantitative analysis of significantly accumulated proteins during the Arabidopsis seedling Deetiolation process[J]. J Integrative Plant Biol, 2006, 48 :104-113. [36]Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice[J]. Diabetes, 2000,49(9), 1534-1542. [37]Yamauchi T, Kamon J, Waki H,et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med, 2001, 7(8):941-946. [38]Abdel-Gaber AM, Abd-El-Nabey BA, Sidahmed IM, et al. Inhibitive action of some plant extracts on the corrosion of steel in acidic media[J]. Corrosion Science, 2006, 48(9):2765-2779. [39]Solimando DA, Jr BS,Pharm MA. Drug information handbook for oncology[M]. 7th edition.Canada :Lexi-Comp, Inc., 2008. [40]Sato Y, Murakami T, Funatsuki H, et al. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings[J]. J Exp Bot, 2001, 52(354):145-151. [41]Matsumura T, Tabayashi N, Kamagata Y, et al. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress[J]. Physiolo Plant, 2002, 116(3):317-327. [42]Prashanth SR, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance[J]. Transgenic Res, 2008, 17(2):281-291. [43]Zhao F, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice[J]. Plant Cell, 2006, 86 :349-358. [44]Zhang Z, Zhang Q, Wu J, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2)plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PloS One, 2013, 8(2):e57472. [45]McKersie BD, Chen Y, De BM, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L. )[J]. Plant Physiology, 1993, 103(4):1155-1163. [46]Samis K, Bowley S, McKersie B. Pyramiding Mn-superoxide dis-mutase transgenes to improve persistence and biomass production in alfalfa[J]. J Exp Bot, 2002, 53(372):1343-1350. [47] 韩利芳, 张玉发. 烟草Mn SOD 基因在保定苜蓿中的转化[J]. 生物技术通报, 2004(1):39-46. [48]Aquilante C, Leternt SP, et al. Increased brain P-glycoprotein in morphine tolerant rats[J]. Pharmacol Let, 2000, 66 :47-51. [49]Rubio MC, Gonzalez EM, Minchin FR, et al. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases[J]. Physiologia Plantarum, 2002, 115(4):531-540. [50] 王瑛, 朱宝成, 孙毅, 等. 外源lea3 基因转化紫花苜蓿的研究[J]. 核农学报, 2007, 21(3):249-252. |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[4] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines [J]. Biotechnology Bulletin, 2023, 39(8): 185-193. |
[7] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[8] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[9] | MENG Guo-qiang, GUAN Jian-wen, NIU Chun-mei, ZHOU Ying, SHEN Su-lin, WEI You-heng. Construction and Functional Study of RagA Transgenic Drosophila [J]. Biotechnology Bulletin, 2023, 39(6): 171-180. |
[10] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[11] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[12] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[13] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[14] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[15] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||