[1]Sangokoya C, Telen MJ, Chi JT. MicroRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease[J]. Blood, 2010, 116:4338-4348. [2]Bartuma H, Panagopoulos I, Collin A, et al. Expression levels of HMGA2 in adipocytic tumors correlate with morphologic and cytog-enetic subgroups[J]. Molecular Cancer, 2009, 8:36 1186-1476. [3]Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J].The Journal of Biological Chemistry, 2009, 284:13291-13295. [4]Singh B, Ronghe AM, Chatterjee A, Bhat NK. MicroRNA-93 regula-tes NRF2 expression and is associated with breast carcinogene-sis[J].Carcinogenesis, 2013, 285(17):13045-13056. [5]Yang M, Yao Y, Eades G, et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism[J].Brest Caner Res Treat, 2011, 129(3):983-991. [6]Luo Y, Eggler AL, Liu D, et al. Sites of alkylation of human Keap1 by natural chemoprevention agents[J]. J Am Soc Mass Spectrom, 2007, 18:2226-2232. [7]Li H, Ren YZ, Duan HJ, et al . Effects of tBHQ on the oxidative stress and the expression of Nrf2 in kidney of diabetic mice[J]. Chin Pharmacol Bull, 2009, 25(2):1341-1344. [8]Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival[J]. Toxicol Appl Pharmacol, 2010, 244(1):37-42. [9]Shin DH, Park HM, Jung KA, et al. The Nrf2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis[J]. Free Radic Biol Med, 2010, 48(8):1051-1063. [10]Eades G, Yang M, Yao Y, et al. MiR-200aregulatesNrf2activation by targetingKeap1mRNA in breast cancer cells[J]. Biol Chem, 2011, 286(47):40725-40733. [11]van Jaarsveld MT, Helleman J, Boersma AW, et al. MiR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells[J]. Oncogene, 2012, 285(17):13045-13056. [12]Li H, Ren YZ, Duan HJ, et al. Effects of tBHQ on the oxidative stress and expression of Nrf2 in kidneys of diabetic mice[J]. Chin Pharmacol Bull, 2009, 25(2):1341-1344. [13]Stachurska A, Ciesla M, Kozakowska M, et al. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygena-se-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells[J]. Mol Nutr Food Res, 2013, 57(3):504-515. [14]Pulkkinen KH, Yla-Herttuala S, Levonen AL. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells[J]. Free Radic Biol Med, 2011, 51(11):2124-2131. [15]Bates DJ, Li N, Liang R, et al. MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging[J]. Aging Cell, 2010, 9(1):1-18. [16]Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic Sirtuin 1 levels via microRNA-34a inhibition[J]. J Biol Chem, 2010, 285(17):12604-12611. [17]Li N, Muthusamy S, Liang R, et al. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of MGST1 and Sirt1.[J].Mech Ageing Dev, 2011, 132(3):75-85. [18]Okazaki M, Iwasaki Y, Nishiyama M, et al. Terada PPARbeta/delta regulates the human SIRT1 gene transcription vis Sp1[J]. Endocr J, 2010, 57(5):403-413. [19]Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function[J]. J Biol Chem, 2010, 285(17):13045-13056. |