[1] 李学军, 李思发, 冯金海, 等. 以色列红罗非鱼耐盐性的初步研究[J]. 上海海洋大学学报, 2003, 12(3):205-208.
[2] 李学军, 李爱景, 李思发, 蔡完其. 新引进萨罗罗非鱼与其它8种罗非鱼耐盐差异[J]. 水产学报, 2010, 34(7):1072-1079.
[3] 柳旭东, 张利民, 王际英, 等. 盐度对水产动物体组成与组织结构的影响[J]. 养殖与饲料, 2008, 9:60-64.
[4] Geering K. The functional role of the β-subunit in the maturation and intracellular transport of Na +/K +-ATPase[J]. FEBS Letters, 1991, 285(2):189-193.
[5] Lingrel JB, Williams MT, Vorhees CV, et al. Na, K-ATPase and the role of α isoforms in behavior[J]. Journal of Bioenergetics and Biomembranes, 2007, 39(5-6):385-389.
[6] 田相利, 王国栋, 董双林, 等. 盐度突变对半滑舌鳎血浆渗透压和鳃丝Na +/K +-ATP酶活性的影响[J]. 海洋科学, 2011, 35(2):27-31.
[7] Beyenbach KW, Ferire CA, Kinne RK, et al. Epithelial transport of magnesium in the kidney of fish[J]. Mineral and electrolyte Metabolism, 1993, 19(4-5):241-249.
[8] 林浩然. 鱼类生理学[M]. 广州:广东教育出版社, 109-145.
[9] Krupa A, Preethi G, Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thr and Tyr kinases[J]. Journal of Molecular Biology, 2004, 339(5):1025-1039.
[10] 姜铮, 王芳, 何湘, 等. 蛋白质磷酸化修饰的研究进展[J]. 生物技术通讯, 2009, 20(2):233-237
[11] Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J]. Annual Review of Biochemistry, 1997, 66(1):315-335.
[12] Shakin-Eshleman SH, Spitalnik SL, Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency[J]. Journal of Biological Chemistry, 1996, 271(11):6363-6366
[13] Madsen SS, Larsen BK, Jensen FB. Effects of freshwater to seawater transfer on osmoregulation, acid-base balance and respiration in river migration whitefish(Coregonus lavaretus)[J]. Journal of Comparative Physioloby B, 1996, 166(2):101-109.
[14] Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Review, 2005, 85(34):97-177.
[15] Hwang PP, Lee TH. New insights into fish ion regulation and mitochondrion- rich cells[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology, 2007, 148(3):479-497.
[16] Marshall WS. Na +, Cl -, Ca 2+ and Zn 2+ transport by fish gills:retrospective review prospective synthesis[J]. Journal of Experimental Zoology, 2002, 293(3):264-283.
[17] Fiol DF, Kültz D. Osmotic stress sensing and signaling in fishes[J]. The FEBS Jouranl, 2007, 274(22):5790-5798.
[18] Mancera JM, McCormick SD. Rapid activation of gill Na +, K +-ATPase in the euryhaline teleosts Fundulus heteroclitus[J]. Journal of Experimental Zoology, 2000, 287(4):263-274.
[19] 李爱景, 李学军. 尼罗罗非鱼在淡、海水中Na +/K +-ATPase活性变化[J]. 河南师范大学学报:自然科学版, 2005, 33(4):102-105.
[20] 封苏娅, 赵峰, 庄平, 章龙珍. 中华鲟幼鱼鳃丝Na +, K +-ATPase α亚基渗透调节的分子机制初步研究[J]. 水产学报, 2012, 36(9):1388-1391.
[21] Romao S, Freire CA, Fanta E. Ionic regulation and Na +, K +-ATPase activity in gills and kidney of the Antarctic aglomerular cod icefish exposed to dilute seawater[J]. Journal of Fish Biology, 2001, 59(2):463-468.
[22] Heijden A, Verbost P, Eygensteyn J, et al. Mitochondrea-rich cells in gills of tilapia(Oreochromis mossambicus)adapted to fresh water or sea water:quantification by confocal laser scanning microscopy[J]. The Journal of Experimental Biology, 1997, 200:55-64.
[23] Kelly SP, Chow LNK, Woo NYS. Alterations in Na +/K +-ATPase activity and gill chloride cell morphometrics of juvenile black sea bream(Mylio macrocephalus)in response to salinity and ration size[J]. Aquaculture, 1999, 172(3-4):351-367.
[24] Mbaye T, Mckenzie DJ, Francois B. Salinity related variation in gene expression in wild populations of the black-chinned tilapia from various West African coastal marine, estuarine and freshwater habitats[J]. Estuarine Coastal and Shelf Science, 2011, 91(1):102-109.
[25] Gaumet F, Boeuf G, Severe A, et al. Effects of salinity of the ionic balance and growth of juvenile turbot[J]. Journal of Fish Biology, 1995, 47(5):865-876.
[26] Febry R, Lutz P. Energy partitioning in fish:The activityrelated cost of osmoregulation in Euryhaline cichlid[J]. The Journal of Experimential Biology, 1987, 128:63-85. |