Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (4): 1-5.
• Review • Next Articles
Cheng Qin, Jin Gang, Li Huimin, Peng Xinyi, Li Ping, Wang Liping
Received:
2013-10-09
Online:
2014-04-29
Published:
2014-04-29
Cheng Qin, Jin Gang, Li Huimin, Peng Xinyi, Li Ping, Wang Liping. Advances in Induction of Cassava FEC and Agrobacterium-mediated Transformation[J]. Biotechnology Bulletin, 2014, 0(4): 1-5.
[1] Liu J, Zheng QJ, Ma QX, et al. Cassava Genetic transformation and its application in breeding[J]. Journal of Integrative Plant Biology, 2011, 53(7):552-569. [2] Ceballos H, Okogbenin E, Pbrez JC, et a1. Cassava in root and tuber crops, handbook of plant breeding[C]. Springer New York, 2010. [3] Li HQ, Sautter C, Potrykus I, et al. Genic transformation of cassava(Crantz)[J]. Ture Biotechnology, 1996, 14:736-740. [4] Li HQ, Huang YW, Liang CY, et al. Regeneration of cassava plavia shoot organogenesis[J]. Plant Cell Report, 1998, 17:410-414. [5] Schpke C, Taylor N, Carcamo R, et al. Regeneration of transgenic cassava plants(Crantz)from microbombarded embryogenic suspension cultures[J]. Nature Biotechnology, 1996, 14:731-735. [6] Taylor N, Edwards M, Kiernan RJ, et al. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava(Crantz)[J]. Nature Biotechnology, 1996, 14:726-730. [7] Taylor N, Chavarriaga P, Raemakers K, et al. Development and application of transgenic technologies in cassava[J]. Plant Molecular Biology, 2004, 56:671-688. [8] Zhang P, Legris G, Coulin P, et al. Production of stably transformed cassava plants via particle bombardment[J]. Plant Cell Reports, 2000, 19:939-945. [9] Zhang P . Studies on cassava(Manihot esculenta Crantz)transfor-mation:Towards genetic improvement[D]. Switzerland:2000 . [10] 康冬鸽, 李瑞梅, 胡新文, 等. 木薯的再生体系和基因转化方法[J]. 基因组学与应用生物学, 2009, 28(3):619-624. [11] Zhang P, Puonti-Kaerlas J. Regeneration of transgenic cassava from transformed embryogenic tissues[J]. Methods Molecular Biology, 2005, 286:165-176. [12] Bull SE, Owiti JA, Niklaus M, et al. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava[J]. Nature Protocols, 2009, 4:1845-1854. [13] Zhang P, Gruissem W. Production of transgenic cassava(Manihot esculenta Crantz)in transgenic crops of the world—Essential Protocols[C]. the Netherlands:Kluwer Academic Publishers, 2004:301-319. [14] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiology Plant, 1962, 15:473. [15] Gresshof PM, Doy CH. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera[J]. Z Pflanzenphysio, 1974, 73:132-141. [16] 赵姗姗, 李海霞, 刘佳, 等. 我国主要栽培木薯品种体细胞胚胎发生与芽器官发生的研究[J]. 农业生物技术学报, 2010, 18(1):37-44. [17] Siritunga D, Sayre R. Generation of cyanogen-free transgenic cassava[J]. Planta, 2003, 217:367-373. [18] 尹彩霞, 乔爱民, 张鹏, 等. 木薯组织培养和转基因育种研究进展[J] , 仲恺农业工程学院学报, 2009, 22(2):65-71 . [19] Raemakers K, Schreuder M, Pereira I, et al. Progress made in FEC transformation of cassava[J]. Euphytica, 2001, 120:15-24. [20] Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of transgenic cassava using negative and positive selection[J]. Transgenic Research, 2000, 9:405-415. [21] González AE, Schopke C, Taylor NJ, et al. Regeneration of transgenic cassava plants(Manihot esculenta Crantz)through Agrobacterium-mediated transformation of embryogenic suspension cultures[J]. Plant Cell Reports, 1998, 17:827-831. [22] Schreuder MM, Raemakers C, Jacobsen E, et al. Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava(Manihot esculenta Crantz)[J]. Euphytica, 2001, 120:35-42. [23] Zhang P, Jaynes J, Potrykus I, et al. Transfer and expression of an artificial storage protein(ASP1)gene in cassava(Manihot esculenta Crantz)[J]. Transgenic Research, 2003, 12:243-250. [24] Zhang P, Bohl-Zenger S, Pounti-Kaerlas J, et al. Two cassava promoters related to vascular expression and storage root formation[J]. Planta, 2003, 218:192-203. [25] Beltran J, Pr?as M, Al-Babili S, et al. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava(Manihot esculenta Crantz)[J]. Planta, 2010, 231:1413-1424. [26] Chellappan P, Masona MV, Vanitharani R, et al. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava[J]. Plant Molecular Biology, 2004, 56:601-611. [27] Zhang P, Vanderschuren H, Futterer J, et al. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes[J]. Plant Biotechnology, 2005, 3:385-397. [28] Vanderschuren H, Akbergenov R, Pooggin MM, et al. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs[J]. Plant Molecular Biology, 2007, 64:549-557. [29] Vanderschuren H, Alder A, Zhang P, et al. Dosedependent RNAi-mediated geminivirus resistance in the tropical root crop cassava[J]. Plant Molecular Biology, 2009, 70:265-272. [30] Abhary M, Siritunga D, Stevens G, et al. Transgenic biofortification of the starchy staple cassava(Manihot esculenta)generates a novel sink for protein[J]. PLoS ONE, 2011, 6(1):e16256. [31] Yadav JS, Ogwok E, Wagaba H, et al. RNAi-mediated resistance to cassava brown streak Uganda virus in transgenic cassava[J]. Plant Pathology, 2011, (10):1364-3703. [32] Bull SE, Ndunguru J, Gruissem W, et al. Cassava:constraints to production and the transfer of biotechnology to African laboratories[J]. Plant Cell Reports, 2011, 30:779-787. [33] Chetty CC, Rossin CB, Gruissem W, et al. Empowering biotechnology in southern Africa:Establishment of a robust transformation platform for the production of transgenic industrypreferred cassava[J]. New Biotechnology, 2012(10):1016. [34] Sayre R, Beeching JR, Cahoon EB, et al. The BioCassava plus program:biofortification of cassava for Sub-Saharan Africa[J]. Annual Review of Plant Biology, 2011, 62:251-272. |
[1] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[2] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[3] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[4] | HOU Rui-ze BAO Yue CHEN Qi-liang MAO Gui-ling WEI Bo-lin HOU Lei-ping LI Mei-lan. Cloning,Expression and Functional Identification of PRR5 Gene in Pakchoi [J]. Biotechnology Bulletin, 2023, 39(10): 128-135. |
[5] | ZHOU Jia-yan, ZOU Jian, CHEN Wei-ying, WU Yi-chao, CHEN Xi-tong, WANG Qian, ZENG Wen-jing, HU Nan, YANG Jun. Construction of Multi-gene Interference System for Plant and Analysis of Its Application Efficiency [J]. Biotechnology Bulletin, 2023, 39(1): 115-126. |
[6] | ZHANG Jun, ZHANG Hong, ZHANG Rui, LU Guo-dong, YONG Jing-jiao, LANG Si-rui, CHEN Ren. Transformation and Functional Identification of the Key Genes Associated with Steviol Glycosides Biosynthesis in Stevia rebaudiana [J]. Biotechnology Bulletin, 2023, 39(1): 214-223. |
[7] | SUN Wei, ZHANG Yan, WANG Yu-han, XU Hui, XU Xiao-rong, JU Zhi-gang. Cloning of Rd3GT1 in Rhododendron delavayi and Its Effect on Flower Color Formation of Petunia hybrida [J]. Biotechnology Bulletin, 2022, 38(9): 198-206. |
[8] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[9] | YANG Jia-hui, SUN Yu-ping, LU Ya-ning, LIU huan, LU Cun-fu, CHEN Yu-zhen. Abiotic Stress Resistance of Escherichia coli Transformed with Arabidopsis thaliana AtTERT Gene [J]. Biotechnology Bulletin, 2022, 38(2): 1-9. |
[10] | ZHOU Cheng-zhe, CHANG Xiao-jun, ZHU Chen, CHENG Chun-zhen, CHEN Yu-kun, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Establishment of an Efficient in planta Transformation Method for Camellia sinensis [J]. Biotechnology Bulletin, 2022, 38(2): 263-268. |
[11] | DANG Yuan, LI Wei, MIAO Xiang, XIU Yu, LIN Shan-zhi. Cloning of Oleosin Gene PsOLE4 from Prunus sibirica and Its Regulatory Function Analysis for Oil Accumulation [J]. Biotechnology Bulletin, 2022, 38(11): 151-161. |
[12] | ZHAO Bao-ding, LV Jia, SHEN Yu-yu, GUI Ling, CHEN Zhong-xiu, CHEN Jie, LU Fu-ping, LI Ming. Efficient Transformation of Uridine by Escherichia coli Based on Signal Peptide and Molecular Chaperone Strategy [J]. Biotechnology Bulletin, 2022, 38(11): 238-249. |
[13] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
[14] | FENG Cui-lian, WAN Yue, WANG Jun-gang, FENG Xiao-yan, ZHAO Ting-ting, WANG Wen-zhi, SHEN Lin-bo, ZHANG Shu-zhen. Establishment of a Transformant-specific Detection Method for Cry1Ac-2A-gna Transgenic Sugarcane BCG-17 [J]. Biotechnology Bulletin, 2021, 37(5): 248-258. |
[15] | CUI Xiang-hua, TAO Nan, CHENG Bo-pu, ZHAO Yong-chang, CHEN Wei-min, LI Jing. Screening Promoters for Genetic Transformation of Cyclocybe aegerita [J]. Biotechnology Bulletin, 2021, 37(5): 259-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||