[1] 刘鹏, 李爽, 贾晓强, 等. 基因工程菌生产D-乳酸研究进展[J]. 现代化工, 2010, 30(10):13-17.
[2] Datta R, Tsai SP, Bonsignore P, et al. Technological and economic potential of poly(lactic acid)and lactic acid derivatives[J]. FEMS Microbiology Reviews, 1995, 16(2-3):221-231.
[3] Vijayakumar J, Aravindan R, Viruthagiri T. Recent trends in the production, purification and application of lactic acid[J]. Chemical and Biochemical Engineering Quarterly, 2008, 22(2):245-264.
[4] Bothast RJ, Nichols NN, Dien BS. Fermentations with new recombinant organisms[J]. Biotechnology Progress, 1999, 15(5):867-875.
[5] Dien BS, Nichols NN, O'Bryan PJ, et al. Development of new etha-nologenic Escherichia coli strains for fermentation of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2000, 84(1-9):181-196.
[6] Magasanik B. Catabolite repression[M]. Cold Spring Harbor Laboratory Press, 1961, 26:249-256.
[7] Deutscher J. The mechanisms of carbon catabolite repression in bacteria[J]. Current Opinion in Microbiology, 2008, 11(2):87-93.
[8] Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria[J]. Microbiological Reviews, 1993, 57(3):543.
[9] Tanaka Y, Teramoto H, Inui M, et al. Regulation of expression of general components of the phosphoenolpyruvate:carbohydrate phosphotransferase system(PTS)by the global regulator SugR in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2008, 78(2):309-318.
[10] Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system[J]. Proceedings of the National Academy of Science of the United States of America, 1964, 52(4):1067-1074.
[11] Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria[J]. Microbiology and Molecular Biology Reviews, 2006, 70(4):939-1031.
[12] Meins M, Jen? P, Müller D, et al. Cysteine phosphorylation of the glucose transporter of Escherichia coli[J]. Journal of Biological Chemistry, 1993, 268(16):11604-11609.
[13] Zhou S, Iverson AG, Grayburn WS. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production[J]. Biotechnology Letters, 2008, 30(2):335-342.
[14] Zhou S, Iverson AG, Grayburn WS. Doubling the catabolic reducing power(NADH)output of Escherichia coli fermentation for production of reduced products[J]. Biotechnology Progress, 2010, 26(1):45-51.
[15] Wang Y, Manow R, Finan C, et al. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9):1371-1377.
[16] 赵锦芳, 许丽媛, 王永泽, 等. 利用五碳糖产高纯度 L-乳酸的大肠杆菌基因工程菌的构建[J]. 微生物学报, 2013, 53(4):328-337.
[17] Nichols N, Dien B, Bothast R. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol[J]. Applied Microbiology and Biotechnology, 2001, 56(1-2):120-125.
[18] 严涛, 赵锦芳, 高文慧, 等. 大肠杆菌工程菌 ptsG 基因敲除及其缺陷株混合糖同型乙醇发酵[J]. 生物工程学报, 2013, 29(7):937-945. |