Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (2): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.001
• Review and editorial • Next Articles
Du Kui1,2, Liang Fang3, Geng Yahong1, Li Yeguang1
Received:
2014-07-09
Online:
2015-02-05
Published:
2015-02-06
Du Kui, Liang Fang, Geng Yahong, Li Yeguang. Cultivation of Microalgae with Flue Gas: Mechanism and Application[J]. Biotechnology Bulletin, 2015, 31(2): 1-9.
[1] Greenwell HC, Laurens LML, Shields RJ, et al. Placing microalgae on the biofuels priority list:a review of the technological challenges[J]. Journal of the Royal Society Interface, 2010, 7(46):703-726. [2] Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production[J]. Appl Microbiol Biotechnol, 2008, 80(5):749-756. [3] Chisti Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3):294-306. [4] Chae SR, Hwang EJ, Shin HS. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology, 2006, 97(2):322-329. [5] Sydney EB, Sturm W, de Carvalho JC, et al. Potential carbon dioxide fixation by industrially important microalgae[J]. Bioresource Technology, 2010, 101(15):5892-5896. [6] 李夜光, 胡鸿钧, 张良军, 等. 以CO2为碳源工业化生产螺旋藻工艺技术的研究[J]. 武汉植物学研究, 1996, 14(4):349-356. [7] Acien FG, Fernandez JM, Magan JJ, et al. Production cost of a real microalgae production plant and strategies to reduce it[J]. Biotechnology Advances, 2012, 30(6):1344-1353. [8] Lee JS, Kim DK, Lee JP, et al. Effects of SO2 and NO on growth of Chlorella sp. KR-1[J]. Bioresource Technology, 2002, 82(1):1-4. [9] Pires JCM, Alvim-Ferraz MCM, Martins FG, et al. Carbon dioxide capture from flue gases using microalgae:Engineering aspects and biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3043-3053. [10] Dora J, Gostomczyk MA, Jakubiak M, et al. Parametric studies of the effectiveness of No oxidation of process by ozone[J]. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, 2009, 30(4):621-633. [11] Hende SVD, Vervaeren H, Boon N. Flue gas compounds and microalgae:(bio-)chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances, 2012, 30(6):1405-1424. [12] Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae:mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56:99-131. [13] Badger MR, Price GD. CO2 concentrating mechanisms in cyanobacteria:molecular components, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383):609-622. [14] Mikhodyuk OS, Zavarzin GA, Ivanovsky RN. Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp.[J]. Microbiology, 2008, 77(4):412-418. [15] Jansson C, Northen T. Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology, 2010, 21(3):365-371. [16] Obst M, Wehrli B, Dittrich M. CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism[J]. Geobiology, 2009, 7(3):324-347. [17] Tsuzuki M, Ohnuma E, Sato N, et al. Effects of CO2 concentration during growth on fatty-acid composition in microalgae[J]. Plant Physiology, 1990, 93(3):851-856. [18] 徐敏, 陈珊, 刘国祥, 等. 极高CO2胁迫对被甲栅藻(Scened-esmus armatus)生理活性和细胞结构影响[J]. 武汉植物学研究, 2004, 22(5):439-444. [19] Xia JR, Gao KS. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae[J]. Journal of Integrative Plant Biology, 2005, 47(6):668-675. [20]Ota M, Kato Y, Watanabe H, et al. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate[J]. Bioresource Technology, 2009, 100(21):5237-5242. [21] Chiu SY, Kao CY, Chen CH, et al. Reduction of CO2 by a high-de- nsity culture of Chlorella sp. in a semicontinuous photobioreactor [J]. Bioresource Technology, 2008, 99(9):3389-3396. [22] Tang D, Han W, Li P, et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology, 2011, 102(3):3071-3076. [23] Maeda K, Owada M, Kimura N, et al. CO2 Fixation from the flue gas on coal-fired thermal power plant by microalgae[J]. Energy Conversion and Management, 1995, 36(6-9):717-720. [24] Olaizola M. Microalgal removal of CO2 from flue gases:changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures[J]. Biotechnology and Bioprocess Engineering, 2003, 8(6):360-367. [25] Matsumoto H, Hamasaki A, Sioji N, et al. Influence of CO2, SO2 and NO in flue gas on microalgae productivity[J]. Journal of Chemical Engineering of Japan, 1997, 30(4):620-624. [26] Soletto D, Binaghi L, Binaghi L, et al. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor[J]. Biochemical Engineering Journal, 2008, 39(2):369-375. [27] Chinnasamy S, Ramakrishnan B, Bhatnagar A, et al. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature[J]. International Journal of Molecular Sciences, 2009, 10(2):518-532. [28] Jacob-Lopes E, Scoparo CHG, Franco TT. Rates of CO2 removal by a aphanothece microscopica Nageli in tubular photobioreactors[J]. Chemical Engineering and Processing, 2008, 47(8):1371-1379. [29] Li FF, Yang ZH, Zeng R, et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber[J]. Industrial & Engineering Chemistry Research, 2011, 50(10):6496-6502. [30] Fan LH, Zhang YT, Cheng LH, et al. Optimization of carbon dioxide fixation by Chlorelia vulgaris cultivated in a membrane-photobioreactor[J]. Chemical Engineering & Technology, 2007, 30(8):1094-1099. [31] Jacob-Lopes E, Scoparo E, Queiroz CHG, et al. Biotransformations of carbon dioxide in photobioreactors[J]. Energy Conversion and Management, 2010, 51(5):894-900. [32] Ryu HJ, Oh KK, Kim YS. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):471-475. [33] Kumar K, Dasgupta CN, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria[J]. Bioresource Technology, 2011, 102(8):4945-4953. [34] Jin HF, Lim BR, Lee K. Influence of nitrate feeding on carbon dioxide fixation by microalgae[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2006, 41(12):2813-2824. [35] 李夜光, 胡鸿钧. 螺旋藻培养液吸收CO2特性的研究[J]. 武汉植物学研究, 1996, 14(3):253-260. [36] 李夜光, 胡鸿钧, 龚小敏. 螺旋藻培养液pH值变化的机理和碳源利用率的研究[J]. 生物工程学报, 1996, 12(增刊):242-248. [37] 李夜光, 耿亚红, 殷大聪, 等. 微藻养殖池补充二氧化碳的装置:中国, CN 100419066C[P].2008-09-17. [38] Hauck JT, Olson GJ, Scierka SJ, et al. Effects of simulated flue gas on growth of microalgae[J]. Abstracts of Papers of the American Chemical Society, 1996, 212:1391-1396. [39] Lee JH, Lee JS, Shin CS, et al. Effects of NO and SO2 on growth of highly-CO2-tolerant microalgae[J]. Journal of Microbiology and Biotechnology, 2000, 10(3):338-343. [40] Negoro M, Shioji N, Miyamoto K, et al. Growth of Microalgae in high CO2 gas and effects of SOx and NOx[J]. Applied Biochemistry and Biotechnology, 1991, 28-29(1):877-886. [41] Miller Y, Finlayson-Pitts BJ, Gerber RB. Ionization of N2O4 in contact with water:mechanism, time scales and atmospheric implications[J]. Journal of the American Chemical Society, 2009, 131(34):12180-12185. [42] Nagase H, Yoshihara K, Eguchi K, et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae[J]. Biochemical Engineering Journal, 2001, 7(3):241-246. [43] Nagase H, Yoshihara K, Eguchi K, et al. Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system[J]. Journal of Fermentation and Bioengineering, 1997, 83(5):461-465. [44] Vermeiren J, Van de Wiele T, Verstraete W, et al. Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium[J]. Journal of Biomedicine and Biotechnology, 2009, 2009:1-10. [45] Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii:an alternative NO production pathway in photosynth-etic organisms[J]. Plant and Cell Physiology, 2002, 43(3):290-297. [46] Mallick N, Rai LC, Mohn FH, et al. Studies on nitric oxide(NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum[J]. Chemosphere, 1999, 39(10):1601-1610. [47] Yoshihara KI, Nagase H, Eguchi K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J]. Journal of Fermentation and Bioengineering, 1996, 82(4):351-354. [48] Radmann EM, Costa JAV. Lipid content and fatty acids composti-tion variation of microalgae exposed to CO2, SO2 and NO[J]. Quimica Nova, 2008, 31(7):1609-1612. [49] Yanagi M, Watanabe Y, Saiki H. CO2 fixation by Chlorella sp. HA-1 and its utilization[J]. Energy Conversion and Management, 1995, 36(6-9):713-716. [50] Singh UB, Ahluwalia AS. Microalgae:a promising tool for carbon sequestration[J]. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1):73-95. [51] Nagase H, Eguchi K, Yoshihara K, et al. Improvement of microalgal NOx removal in bubble column and airlift reactors[J]. Journal of Fermentation and Bioengineering, 1998, 86(4):421-423. [52] Jin HF, Santiago DEO, Park J, et al. Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp.[J]. Biotechnology and Bioprocess Engineering, 2008, 13(1):48-52. |
[1] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[2] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[3] | LI Tao, ZHAO Wei, YANG Bing-Jie, CHEN Zi-Shuo, WU Hua-lian, WU Hou-bo, XIANG Wen-zhou. Outdoor Cultivation Oil Extraction of the Salt-tolerant Microalga,Eustigmatos sp. [J]. Biotechnology Bulletin, 2020, 36(7): 130-138. |
[4] | ZHANG Jing-jie, LIU Shen-kun, TANG Tao, GE Bao-sheng, LI Run-zhi, CUI Hong-li. Preparation of Microalgae-derived Biological Stimulants and Its Application in Protected Agriculture [J]. Biotechnology Bulletin, 2020, 36(4): 164-174. |
[5] | YANG Bing-jie, XIANG Wen-zhou, JIN Xue-Jie, CHEN Zi-shuo, WANG Ling, WU Hou-bo. Isolation and Identification of an Algicidal Bacterium CBA02 and Its Algae-lysing Characteristics [J]. Biotechnology Bulletin, 2020, 36(11): 55-62. |
[6] | ZHANG Wei-wei, YANG Hui-xia, XUE Ping. A General Overview of Nanomaterials Immobilized Lipases for Biodiesel Production [J]. Biotechnology Bulletin, 2020, 36(1): 160-166. |
[7] | YANG Sheng-nan, LIU Na, SONG Dong-hui. Optimization of Chromium(VI)Removal by Mixture of Bacteria-microalgae and Determination of Chromium(VI)Reductase Activities [J]. Biotechnology Bulletin, 2019, 35(9): 83-92. |
[8] | LI Zhi, ZHOU Qiu-xiang, LI Qiu-ling, LIU Meng-ying, ZHOU Zhi-you, LI Han-guang. Overview on Efficient Methods for the Determination of Microalgae Lipid Content [J]. Biotechnology Bulletin, 2019, 35(12): 189-195. |
[9] | LI Tao, XU Jin, WU Hua-lian, WANG Ming, XIANG Wen-zhou. Effects of Nitrogen Concentration on the Growth,Lipid Accumulation and Fatty Acids Distribution of Oleaginous Chlorococcum sp. [J]. Biotechnology Bulletin, 2018, 34(5): 154-162. |
[10] | MA Hao-tian, LI Run-zhi, ZHANG Hong-jiang, HANG Wei, CUI Hong-li. Research Progress on the Treatment of Wastewater from Poultry and Livestock Breeding Based on the Microalgae Cultivation [J]. Biotechnology Bulletin, 2018, 34(11): 83-90. |
[11] | SHI Fei-fei, CHEN Tong, CHENG Wei-lan, SONG Cheng-Fei, JI Chun-li, LI Run-zhi. Acid Domestication and UV Induction Increase Microalgae Tolerance to Acid Stress [J]. Biotechnology Bulletin, 2017, 33(8): 146-151. |
[12] | LI Jia-ying,LI Tao, TAN Li,WU Jia-yi ,XIANG Wen-zhou, LIU De-hai. Effects of Salinity on the Growth and Biochemical Properties of a Freshwater Algae Scenedesmus sp. [J]. Biotechnology Bulletin, 2017, 33(7): 155-161. |
[13] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
[14] | CHEN Cheng-hao, WU Jia-yi, TANG Ming-xing, LI Tao, WU Hua-lian, WANG Guang-hua, DAI Shi-kun, XIANG Wen-zhou. Evaluation on Growth and Biochemical Properties of Eight Strains of Marine Microalgae Nannochloris sp. [J]. Biotechnology Bulletin, 2016, 32(6): 231-237. |
[15] | WANG Yi-bin, MIAO Jin-lai, JIANG Ying-hui, LIU Fang-ming, ZHENG Zhou, LI Guang-you. Roles of Proline and Soluble Sugar in the Cold-adaptation of Antarctic Ice Microalgae [J]. Biotechnology Bulletin, 2016, 32(2): 198-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||