Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 160-166.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0618
Previous Articles Next Articles
ZHANG Wei-wei1,2, YANG Hui-xia1,2, XUE Ping1
Received:
2019-07-09
Online:
2020-01-26
Published:
2020-01-08
ZHANG Wei-wei, YANG Hui-xia, XUE Ping. A General Overview of Nanomaterials Immobilized Lipases for Biodiesel Production[J]. Biotechnology Bulletin, 2020, 36(1): 160-166.
[1] Ho SH, Chen CY, Lee DJ, et al.Perspectives on microalgal CO2-emissionmitigation systems:A review[J]. Biotechnol Adv, 2011, 29:189-198. [2] Abbaszaadeh A, Ghobadian B, Omidkhah MR, et al.Current biodiesel production technologies:A comparative review[J]. Energy Convers Manag, 2012, 63:138-148. [3] Calero J, et al.An overview on glycerol-free processes for the produ-ction of renewable liquid biofuels, applicable in diesel engines[J]. Renew Sustain Energy Rev, 2015, 42:1437-1452. [4] Gharat, N, Rathod, VK.Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate[J]. Ultrason Sonochem, 2013, 20:900-905. [5] Hama S, Kondo A.Enzymatic biodiesel production:An overview of potential feedstocks and process development[J]. Bioresour Technol, 2013, 135:386-395. [6] Gui MM, Lee KT, Bhatia S.Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock[J]. Energy 2008, 33:1646-1653. [7] Amini Z, Ilham Z, Ong HC, et al.State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production[J]. Energy Convers Manag, 2017, 141:339-353. [8] Tacias-Pascacio VG, et al.Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil:Critical role of the immobilization carrier[J]. Fuel, 2017, 200:1-10. [9] Kim KH, Lee EY.Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil[J]. Energies, 2017, 10:1790. [10] Ansari SA, Husain Q.Potential applications of enzymes immobilized on/in nano materials:A review[J]. Biotechnol Adv, 2012, 30:512-523. [11] Ahmad R, Sardar M.Enzyme immobilization:An overview on nanoparticles as immobilization matrix[J]. Biochem Anal Biochem, 2015, 4:178. [12] Ding S, Cargill AA, Medintz IL, et al.Increasing the activity of immobilized enzymes with nanoparticle conjugation[J]. Curr Opin Biotechnol, 2015, 34:242-250. [13] Hwang ET, Gu MB.Enzyme stabilization by nano/microsized hybrid materials[J]. Eng Life Sci, 2013, 13:49-61. [14] Antczak MS, Kubiak A, Antczak T, et al.Enzymatic biodiesel synthesis-key factors affecting efficiency of the process[J]. Renew Energy, 2009, 34:1185-1194. [15] Aarthy M, aravanan P, Gowthaman MK, et al. Enzymatic transesterification for production of biodiesel using yeast lipases:An overview[J]. Chem Eng Res Des, 2014, 92:1591-1601. [16] Guldhe A, Singh B, et al.Advances in synthesis of biodiesel via enzyme catalysis:Novel and sustainable approaches[J]. Renew Sustain Energy Rev, 2015, 41:1447-1464. [17] Cipolatti EP, Valerio A, Henriques RA, et al.Nanomaterials for biocatalyst immobilization-State of the art and future trends[J]. RSC Adv, 2016, 6:104675-104692. [18] Verma ML, Puri M, Barrow CJ.Recent trends in nanomaterials immobilised enzymes for biofuel production[J]. Crit Rev Biotechnol, 2016, 36:108-119. [19] 张玮玮, 杨慧霞. 基于界面活化的脂肪酶固定化方法研究进展[J]. 化学研究与应用, 2017, 29(12):1785-1790. [20] Chen YZ, Ching CB, Xu R.Lipase immobilization on modified zirconia nanoparticles:Studies on the effects of modifiers[J]. Process Biochem, 2009, 44:1245-1251. [21] Miletić N, Abetz V, Ebert K, et al.Immobilization of Candida antarctica lipase B on polystyrene nanoparticles[J]. Macromol Rapid Commun, 2010, 31:71-74. [22] Garmroodi M, et al.Covalent binding of hyper-activated Rhizomucor miehei lipase(RML)on hetero-functionalized siliceous supports[J]. Int J Biol Macromol, 2016, 86:208-215. [23] Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, et al.Application of magnetic nanoparticles in smart enzyme immobilization[J]. Biotechno Lett, 2016, 38:223-233. [24] Mehrasbi MR, Mohammadi J, Peyda M, et al.Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil[J]. Renew Energy, 2017, 101:593-602. [25] Lee DG, et al.Immobilization of lipase on hydrophobic nano-sized magnetite particles[J]. J Mol Catal Enzym, 2009, 57:62-66. [26] Lei L, Liu X, Li Y, et al.Study on synthesis of poly(GMA)-grafted Fe3O4/SiOx magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization[J]. Mater Chem Phys, 2011, 125:866-871. [27] Zhang WW, Yang XL, Jia JQ, et al.Surfactant-activated magnetic cross-linked enzyme aggregates(magnetic CLEAs)of Thermomyces lanugunosus lipase for biodiesel production[J]. J Mol Catal B:Enzym, 2015, 115:83-89. [28] Li K, Wang JH, He YJ, et al.Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles[J]. Chem Eng J, 2018, 351:258-268. [29] Xing X, et al.CALB immobilized onto magnetic nanoparticles for efficient kinetic resolution of racemic secondary alcohols:Long-term stability and reusability[J]. Molecules, 2019, 24:490. [30] Titirici MM, White RJ, Brun N, et al.Sustainable carbon materials[J]. Chem Soc Rev, 2015, 44:250-290. [31] Markiton M, Boncel S, Janas D, et al.Highly active nanobiocatalyst from lipase noncovalently immobilized on multiwalled carbon nanotubes for Baeyer-Villiger synthesis of lactones[J]. ACS Sustain Chem Eng, 2017, 8:1685-1691. [32] Shah S, Solanki K, Gupta MN.Enhancement of lipase activityin non-aqueous media upon immobilization on multi-walled carbon nanotubes[J]. Chem Cent J, 2007, 1:30. [33] Mohamad N, Buang NA, Mahat NA, et al.Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate[J]. J Ind Eng Chem, 2015, 32:99-108. [34] Li K, Wang JH, He YJ, et al.Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity[J]. J Biotechnol, 2018, 281:87-98. [35] Wang ZG, Wan LS, Liu ZM, et al.Enzyme immobilization on electrospun polymer nanofibers:An overview[J]. J Mol Catal B:Enzym, 2009, 56:189-195. [36] Wong DE, Dai M, Talbert JN, et al.Biocatalytic polymer nanofibers for stabilization and delivery of enzymes[J]. J Mol Catal B:Enzym, 2014, 110:16-22. [37] Huang XJ, Chen PC, Huang F, et al.Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane[J]. J Mol Catal B:Enzym, 2011, 70:95-100. [38] Sing J, et al.Enhanced catalytic activity of lipase encapsulated in PCL nanofibers[J]. Langmuir, 2012, 28:6157-6162. [39] Weiser D, Soti PL, Banoczi G, et al.Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts[J]. Tetrahedron, 2016, 72:7335-7342. [40] Soti PL, et al.Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases[J]. Bioprocess Biosyst Eng, 2016, 39:449-459. [41] Dwivedee BP, Soni S, Laha JK, et al.Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers(PANFs-PFL):A route to develop robust nanobiocatalyst[J]. Int J Biol Macromol, 2018, 119:8-14. [42] Raita M, Arnthong J, Champreda V, et al.Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil[J]. Fuel Process Technol, 2015, 134:189-197. [43] Zhang WW, Yang HX, Liu WY, et al.Improved performance of magnetic cross-linked lipase aggregates by interfacial activation:A robust and magnetically recyclable biocatalyst for transesterification of Jatropha oil[J]. Molecules, 2017, 22:2157. [44] Babaki M, Yousefi M, Habibi Z, et al.Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts:Effect of water, t-butanol and blue silica gel contents[J]. Renew Energy, 2016, 91:196-206. [45] Cazaban D, Illanes A, Wilson L, et al.Bio-inspired silica lipase nanobiocatalysts for the synthesis of fatty acid methyl esters[J]. Process Biochem, 2018, 74:86-93. [46] Tomei J, Helliwell R.Food versus fuel? Going beyond biofuels[J]. Land Use Policy, 2016, 56:320-326. [47] Naylor RL, Higgins MM.The rise in global biodiesel production:Implications for food security[J]. Global Food Security, 2018, 16:75-84. [48] Fan Y, Wu G, Su F, et al.Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil[J]. Fuel, 2016, 178:172-178. [49] Zhang Q, Zheng Z, Liu C, et al.Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres[J]. Colloid Surface B, 2016, 140:446-451. [50] Karimi M.Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel[J]. Biocatal Agric Biotechnol, 2016, 8:182-188. [51] Veillette M, et al.Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts:from model acid oil to microalgae lipids[J]. Chem Eng J, 2017, 308:101-109. [52] Tran DT, et al.Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst[J]. Bioresour Technol, 2013, 135:213-221. [53] Picó EA, et al.Easy reuse of magnetic cross-linked enzyme aggreg-ates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids[J]. J Biosci Bioeng, 2018, 126:451-457. [54] De Vasconcellos A, Miller AH, Aranda DAG, et al.Biocatalysts based on nanozeolite-enzyme complexes:Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock[J]. Colloid Surface B, 2018, 165:150-157. |
[1] | CHEN Jin-hang, ZHANG Yi, ZHANG Jun-tao, WEI Ben-mei, WANG Hong-xun, ZHENG Ming-ming. Preparation of Immobilized Lipase for the Solvent-free Synthesis of Cinnamyl Acetate [J]. Biotechnology Bulletin, 2023, 39(9): 97-104. |
[2] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[3] | GAO Cong, XIAO Chu-jian, LU Shuai, WANG Su-rong, YUAN Hui-hua, CAO Yun-ying. Promoting Effect of Graphene Oxide on the Root Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(6): 120-128. |
[4] | ZHANG Ze-ying, FAN Qing-feng, DENG Yun-feng, WEI Ting-zhou, ZHOU Zheng-fu, ZHOU Jian, WANG Jin, JIANG Shi-jie. Whole Genome Sequencing and Comparative Genomic Analysis of a High-yield Lipase-producing Strain WCO-9 [J]. Biotechnology Bulletin, 2022, 38(10): 216-225. |
[5] | SUN Bao-ting, QIU Meng-xia, WANG Zi-chen, WANG Zi-yuan, CUI Jian-dong, JIA Shi-ru. Preparation of @ZIF-8 Immobilized Enzyme by Using Cysteine as Auxiliary Reagent and Its Characterization [J]. Biotechnology Bulletin, 2021, 37(8): 221-232. |
[6] | ZHAO A-hui, WANG Xian-guo, DONG Jian, HOU Zuo, ZHAO Wan-chun, GAO Xiang, YANG Ming-ming. Advances in the Study of Phospholipase C Response to Stress in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 154-164. |
[7] | LU Shang-de, LIU Jing-jing, FENG Yi-ping, ZHAO Peng, XU Yang-cang. Study on Oxygen Release and Photosynthetic Rate of Immobilized Chlorella [J]. Biotechnology Bulletin, 2021, 37(3): 92-98. |
[8] | WU Rong, CAO Jia-rui, CAO Jun, LIU Fei-xiang, YANG Meng, SU Er-zheng. Expression and Fermentation Optimization of Candida antarctica Lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. |
[9] | WANG Hao, TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing, CUI Bao-kai. Immobilization of Laccase from Trametes orientalis and Its Application for Decolorization of Multifarious Dyes [J]. Biotechnology Bulletin, 2021, 37(11): 142-157. |
[10] | WANG Hui-lan, WU Jin-yong, CHEN Xiang-song, YUAN Li-xia, ZHU Wei-wei, YAO Jian-ming. Immobilization of N-acetylneuraminic Acid Aldolaseand Properties of the Immobilized Enzyme [J]. Biotechnology Bulletin, 2020, 36(6): 165-173. |
[11] | HUANG Yang-tian, LU Yu-biao, HUANG Yi-tie, MENG Fan-long, XU Kai-wen, LI Peng. Screening and Identification of Marine Electricity-producing and Lipase-producing Bacteria and Preliminary Study on Its Culture Conditions [J]. Biotechnology Bulletin, 2020, 36(12): 91-97. |
[12] | ZHU Cai-lin, LÜ Xiang, XIA Xiao-le. Effect of Site-directed Mutagenesis of Amino Acids in Lid Region on the Enzymatic Properties of T1 Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 94-102. |
[13] | CAI Yu-zhen, BAI Qiao-yan, SU Min, TANG Liang-hua. Strategies and Advances in the Molecular Modification of Substrate Binding Pocket of Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 173-180. |
[14] | SHI Li-xia, GAO Song-feng, ZHU Lei-lei. Research Advance in Polyethylene Terephthalate Hydrolytic Enzymes [J]. Biotechnology Bulletin, 2020, 36(10): 226-236. |
[15] | LIN Mei-xuan, ZHOU Xiao-man, GUAN Feng, CUI Wen-jing. Heterologous Expression and Application of Phosphatidylinositol-specific Phospholipase C [J]. Biotechnology Bulletin, 2020, 36(1): 81-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||