[1] Wheeler LA, Vrbanac V, Trifonova R, et al. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras[J]. Mol Ther, 2013, 21(7):1378-1389. [2] Li Y, Lu J, Han Y, et al. RNA interference functions as an antiviral immunity mechanism in mammals[J]. Science, 2013, 342(6155):231-234. [3] Dow LE, Premsrirut PK, Zuber J, et al. A pipeline for the generation of shRNA transgenic mice[J]. Nat Protoc, 2012, 7(2):374-393. [4] Wu CS, Yen CJ, Chou RH, et al. Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma prolifera-tion via fucosyltransferase 2-induced Globo H expression[J]. Int J Cancer, 2014, 134(7):1638-1647. [5] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002, 296(5567):550-553. [6] Moffat J, Grueneberg DA, Yang X, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen[J]. Cell, 2006, 124(6):1283-1298. [7] Yan F, Lu Y, Wu G, et al. A simplified method for constructing artificial microRNAs based on the osa-MIR528 precursor[J]. J Biotechnol, 2012, 160(3):146-150. [8] Diederichs S, Jung S, Rothenberg SM, et al. Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites[J]. Proc Natl Acad Sci USA, 2008, 105(27):9284-9289. [9] Liang G, Chen S, Zhu Y, et al. Construction of miRNA eukaryotic expression vector and its stable expression in human liver cancer cells[J]. Procedia Environ Sci, 2011, 8:451-456. [10] Wu P, Wilmarth MA, Zhang F, et al. miRNA and shRNA expression vectors based on mRNA and miRNA processing[J]. Methods Mol Biol, 2013, 936:195-207. [11] Schopman NC, Liu YP, Konstantinova P, et al. Optimization of shRNA inhibitors by variation of the terminal loop sequence[J]. Antiviral Res, 2010, 86(2):204-211. [12] Wang CM, Wang Y, Fan CG, et al. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2011, 411(3):586-592. [13] Yang L, Li Q, Wang Q, et al. Silencing of miRNA-218 promotes migration and invasion of breast cancer via Slit2-Robo1 pathway[J]. Biomed Pharmacother, 2012, 66(7):535-540. [14] Baek MN, Jung KH, Halder D, et al. Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice[J]. Neurosci Lett, 2010, 475(3):124-128. [15] Hu T, Fu Q, Chen P, et al. Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells[J]. Int J Mol Sci, 2009, 10(5):2158-2168. [16] Wu J, Bonsra AN, Du G. pSM155 and pSM30 vectors for miRNA and shRNA expression[J]. Methods Mol Biol, 2009, 487(2):205-219. [17] Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells[J]. Mol Cell, 2002, 9(6):1327-1333. [18] Chung KH, Hart CC, Al-Bassam S, et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155[J]. Nucleic Acids Res, 2006, 34(7):e53. [19] Yue J, Sheng Y, Ren A, et al. A miR-21 hairpin structure-based gene knockdown vector[J]. Biochem Biophys Res Commun, 2010, 394(3):667-672. [20] Boudreau RL, Monteys AM, Davidson BL. Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs[J]. RNA, 2008, 14(9):1834-1844. [21] Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res, 2011, 39(suppl 1):D152-D157. [22] Shibata A, Iwaki A, Fukumaki Y. A novel expression system for artificial miRNAs containing no endogenous miRNA precursor sequences[J]. J RNAi Gene Silencing, 2007, 3(1):237-237. [23] Schopman NC, Liu YP, Konstantinova P, et al. Optimization of shRNA inhibitors by variation of the terminal loop sequence[J]. Antiviral Res, 2010, 86(2):204-211. [24] Liu C, Zhang L, Sun J, et al. The artificial microRNA mediates GUS-GFP gene silencing using ath-miR169d precursor as backbone[J]. Life Sci J, 2009, 6(2):1-7. [25] van Gestel MA, van Erp S, Sanders LE, et al. shRNA-induced saturation of the microRNA pathway in the rat brain[J]. Gene Ther, 2014, 21(2):205-211. [26] Chumakov SP, Kravchenko JE, Prassolov VS, et al. Efficient downregulation of multiple mRNA targets with a single shRNA-expressing lentiviral vector[J]. Plasmid, 2010, 63(3):143-149. [27] Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity[J]. Science, 2010, 328(5986):1694-1698. [28] Carrasquillo R, Tian D, Krishna S, et al. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity[J]. BMC Cell Biology, 2012, 13(1):33-44. [29] Pu C, Wang L, Miao X, et al. Optimized Tandem amLRNA Mediates Stronger Inhibitory Effects on Hepatitis B Virus Infection[J]. J Gastrointestin Liver Dis, 2011, 20(3):271-278. [30] Yan H, Deng X, Cao Y, et al. A novel approach for the construction of plant amiRNA expression vectors[J]. J Biotechnol, 2011, 151(1):9-14. [31] Fellmann C, Hoffmann T, Sridhar V, et al. An optimized microRNA backbone for effective single-copy RNAi[J]. Cell Rep, 2013, 5(6):1704-1713. [32] Chen SCY, Stern P, Guo Z, et al. Expression of multiple artificial microRNAs from a chicken miRNA126-based lentiviral vector[J]. PLoS One, 2011, 6(7):e22437. [33] Bhagwat B, Chi M, Su L, et al. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation[J]. J Genet Genomics, 2013, 40(5):261-270. |