[1] 田赟. 园林废弃物堆肥化处理及其产品的应用研究[D]. 北京:北京林业大学, 2012. [2] 李琬, 刘淼, 张必弦, 等. 植物根际促生菌的研究进展及其应用现状[J]. 中国农学通报, 2014, 30(24):1-5. [3] Hassen A, Belguith K, Jedidi N, et al. Microbial characterization during composting of municipal solid waste[J]. Bioresource Technology, 2001, 80(3):217-225. [4] 黄丹莲. 堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究[D]. 长沙:湖南大学, 2011. [5] Paola C, Guido A, Roberto M, et al. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity[J]. Waste Management, 2005, 25(2):209-213. [6]Boldrin A, Andersen JK, Christensen TH. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark[J]. Waste Management, 2011, 31(7):1560-1569. [7]隋心, 张荣涛, 钟海秀, 等. 森林生态系统中主要功能微生物的研究进展[J]. 中国农学通报, 2014, 30(28):1-5. [8]张嘉超. 基于分子生物学的堆肥功能微生物种群与体系基质特性关系研究[D]. 长沙:湖南大学, 2013. [9]池玉杰, 伊洪伟. 木材白腐菌分解木质素的酶系统-猛过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J]. 菌物学报, 2007, 26(1):153-160. [10] Howard RL, Abotsi E, Howard S, et al. Lignocellulose biotechnol-ogy:issues of bioconversion and enzyme production[J]. African Journal of Biotechnology, 2003, 2(12):602-619. [11] 史央, 戴传超, 吴耀春, 等. 植物内生真菌强化还田秸杆降解的研究[J]. 环境科学学报, 2004, 24(1):144-149. [12] Zeng GM, Huang HL, Huang DL, et al. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes[J]. Process Biochemistry, 2009, 44(2):396-400. [13] Himmel ME. 生物质抗降解屏障-解构植物细胞壁产生物能[M], 王禄山, 张正, 等译. 北京:化学工业出版社, 2010. [14]曲音波. 木质纤维素降解酶与生物炼制[M], 王禄山, 张正, 等译. 北京:化学工业出版社, 2011. [15]DeLaune PB, Moore PA Jr, Daniel TC, et al. Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter[J]. J Environ Quql, 2004, 33(2):728-734. [16]马丽红, 黄懿梅, 李学章, 等. 牛粪堆肥化中氮素形态与微生物生理群的动态变化和耦合关系[J]. 农业环境科学学报, 2009, 28(12):2674-2679. [17]Specht RL. The ratio of foliar nitrogen to foliar phosphorus:a determinant of leaf attributes and height in life-forms of subtropical and tropical plant communities[J]. Australian Journal of Botany, 2010, 58(7):527-538. [18]姚拓, 龙瑞军, 师尚礼, 等. 高寒草地不同扰动生境土壤微生物氮素生理群数量特征研究[J]. 土壤学报, 2007, 44(1):122-129. [19]Mantelin S, Touraine B. Plant growth-promoting bacteria and nitrate availability:Impacts on root development and nitrate uptake[J]. Journal of Experimental Biotany, 2004, 55(394):27-34. [20]Ruther J, Kleier S. Plant-plant signaling:ethylene synergizes volatile emission in Zea mays induced by exposure to(Z)-3-hexen-1-ol[J]. Journal of Chemical Ecology, 31:2217-2222. [21]曹恩晖, 侯宪文, 李光义, 等. 复合菌剂对盆栽番茄土壤理化性质及微生物活性的影响[J]. 生态环境学报, 2011, 20(5):875-880. [22]王晓杰. 棉花对落叶型黄萎病菌的苗期抗性筛选及绿色木霉菌的生防效果研究[D]. 武汉:华中农业大学, 2014. [23]罗巧玉, 王晓娟, 李媛媛, 等. AM真菌在植物病虫害生物防治中的作用机制[J]. 生态学报, 2013, 33(19):5997-6005. [24]张礼生, 陈红印. 生物防治作用物研发与应用的进展[J]. 中国生物防治学报, 2010, 30(5):581-586. [25]张新建, 黄玉杰, 杨合同, 等. 通过导入几丁质酶基因提高巨大芽孢杆菌的生防效果[J]. 云南植物研究, 2007, 29(6):666-670. [26]Lin H, Wang B, Zhunag R, et al. Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification[J]. Bioresource Technology, 2011, 102:10569-10576. [27]Awasthi MK, Pandey AK, Khan J. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting[J]. Bioresource Technology, 2014, 168:214-221. [28]Liu W, Wang ST, Zhang J. Biochar influences the microbial community structure during tomato stalk composting with chicken manure[J]. Bioresource Technology, 2014, 154:148-154. [29]Zhang L, Sun XY. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar[J]. Bioresource Technology, 2014, 171:274-284. [30]Nakhshiniev B, Muhammad KB, Hazel BG. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity[J]. Bioresource Technology, 2014, 151:306-313. [31]Pan B. Composting of common organic wastes using microbial inoculants[J]. Biotech, 2012, 2(2):127-134. [32]陈同斌, 黄启飞, 高定, 等. 城市污泥堆肥温度动态变化过程及层次效应[J]. 生态学报, 2002, 22(5):736-741. [33]Gu W, Zhang F, Xu P, et al. Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting[J]. Bioresource Technology, 2011, 102:6529-6535. [34]尉良. 农牧业废弃物堆肥腐熟质量控制指标研究[D]. 上海:东华大学, 2009. [35]Jennifer AM, Mitchell MH, Kateryna DM, et al. Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq[J]. Forensic Science International:Genetics, 2014, 13:20-29. [36]楼骏, 柳勇, 李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 2014, 30(15):256-260. [37]Antonio G, Giovanni C. Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis[J]. Soil Biology and Biochemistry, 2006, 38(1):91-102. [38] Chistoserdova L. Recent progress and new challenges in metageno-mics for biotechnology[J]. Biotechnology Letters, 2010, 32(10):1351-1359. [39] Liu L, Li TY, Wei XH, et al. Effects of a nutrient additive on the density of functional bacteria and the microbial community structure of bioorganic fertilizer[J]. Bioresource Technology, 2014, 172:328-334. [40]曹德民, 张穗生, 罗贞贞, 等. 野生型工业酿酒酵母Miseq测序方法的建立[J]. 基因组学与应用生物学, 2014, 33(3):655-660. [41]秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4):445-457. [42]Shaharoona B, Naveed M, Arshad M, et al. Fertilizer-dependent efficiency of Pseudomonas for improving growth, yield, and nutrient use efficiency of wheat(Triticum aestivum L.)[J]. Applied Microbiology and Biotechnology, 2008, 79(1):147-155. [43] Liu C, Liu Y, Fan C, et al. The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(2):433-444. |