[1] Bastawde KB. Xylan structure, microbial xylanases, and their mode of action[J]. World Journal of Microbiol and Biotechnol, 1992, 8(4):353-368. [2] Lagaert SA, Pollet A, Courtin CM, et al. β-Xylosidases and α-l-arabinofuranosidases:accessory enzymes for arabinoxylan degradation[J]. Biotechnol Advances, 2014, 32(2):316-332. [3] Till M, Goldstone D, Card G, et al. Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus[J]. Acta Crystallogr F Struct Biol Commun, 2014, 70(9):1193-1198. [4] Juturu V, Wu JC. Microbial exo-xylanases:a mini review[J]. Applied Biochemistry and Biotechnology, 2014, 174(1):81-92. [5] Camargo D, Sene L, Variz DI, et al. Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass[J]. Applied Biochemistry and Biotechnology, 2015, 175(8):3628-3642. [6] Bosetto A, Justo PI, Zanardi B, et al. Research progress concerning fungal and bacterial β-Xylosidases[J]. Applied Biochemistry and Biotechnology, 2016, 178(4):766-795. [7] Sarmiento F, Peralta R, Blamey JM. Cold and hot extremozymes:industrial relevance and current trends[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3:148. [8] Ito T, Yokoyama E, Sato H, et al. Xylosidases associated with the cell surface of Penicillium herquei IFO 4674[J]. Journal of Bioscience and Bioengineering, 2003, 96(4):354-359. [9] Suzuki S, Fukuoka M, Ookuchi H, et al. Characterization of Aspergillus oryzae glycoside hydrolase family 43 β-xylosidase expressed in Escherichia coli[J]. Journal of Bioscience and Bioengineering, 2010, 109(2):115-117. [10] Siddiqui KS. Some like it hot, some like it cold:temperature dependent biotechnological applications and improvements in extremophilic enzymes[J]. Biotechnology Advances, 2015, 33(8):1912-1922. [11] Li Z, Xue X, Zhao H, et al. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases[J]. Applied and Environmental Microbiology, 2014, 80(11):3426-3432. [12] Teng C, Jia H, Yan Q, et al. High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli[J]. Bioresource Technology, 2011, 102(2):1822-1830. [13] Yang X, Shi P, Huang H, et al. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan[J]. Food Chemistry, 2014, 148(148):381-387. [14] Ravanal MC, Alegria-Arcos M, Gonzalez-Nilo FD, et al. Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosid-ase activity, one monofunctional and the other bifunctional:bioc-hemical and structural analyses explain the difference[J]. Archi-ves of Biochemistry and Biophysics, 2013, 540(1-2):117-124. [15] Li K, Li Z, Luo X, et al. Cloning and expression of a novel xylanase Xyn11-1 from alkaline soil[C]. Springer Berlin Heidelberg, 2015, 333:75-81. [16] Carapito R, Carapito C, Jeltsch JM, et al. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):845-850. [17] Campos E, Negro Alvarez MJ, Sabaris di Lorenzo G, et al. Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria[J]. Microbiological Research, 2014, 169(2-3):213-220. [18] Huy ND, Thayumanavan P, Kwon TH, et al. Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium[J]. Journal of Bioscience and Bioengineering, 2013, 116(2):152-159. [19] Yang W, Bai Y, Yang P, et al. A novel bifunctional GH51 exo-a-L-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity[J]. Biotechnology for Biofuels, 2015, 8:197. [20] Teleman A, Tenkanen M, Jacobs A, et al. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech[J]. Carbohydrate Research, 2002, 337(4):373-377. [21] Zanoelo FF, Polizeli Md Mde L, Terenzi HF, et al. Purification and biochemical properties of a thermostable xylose-tolerant β- D-xylosidase from Scytalidium thermophilum[J]. Journal of Industrial Microbiology and Biotechnology, 2004, 31(4):170-176. [22] Shi H, Li X, Gu H, et al. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/alpha-arabinosidase from Thermotoga thermarum[J]. Biotechnology for Biofuels, 2013, 6(1):1-10. [23] Wagschal K, Heng C, Lee CC, et al. Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture[J]. Applied Microbiology and Biotechnology, 2008, 81(5):855-863. |