Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (11): 30-37.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.004
• Orginal Article • Previous Articles Next Articles
LIU Ying, GAO Li, FENG Jun-rong
Received:
2016-02-23
Online:
2016-11-25
Published:
2016-11-11
LIU Ying, GAO Li, FENG Jun-rong. Research Progress on Population Genomics of Marine Fishes[J]. Biotechnology Bulletin, 2016, 32(11): 30-37.
[1] Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics[J]. Nature Reviews Genetics, 2003, 4:649-655. [2] Ellegren H, Sheldon BC. Genetic basis of fitness differences in natural populations[J]. Nature, 2008, 452:169-175. [3] Wray GA. Genomics and the evolution of phenotypic traits[J]. Annu Rev Ecol, Evol Syst, 2013, 44:55-72. [4] Barrett RD, Hoekstra HE. Molecular spandrels:tests of adaptation at the genetic level[J]. Nat Rev Genet, 2011, 12:767-780. [5] Cossins AR, Crawford DL. Opinion-Fish as models for environmental genomics[J]. Nature Reviews Genetics, 2005, 6:324-333. [6] Canario AVM, Bargelloni L, Volckaert F, et al. Genomics toolbox for farmed fish[J]. Reviews in Fisheries Science, 2008, 16:3-15. [7] Aparicio S, Chapman J, Stupka E, et al. Wholegenome shotgun assembly and analysis of the genome of Fugu rubripes[J]. Science, 2002, 297:1301-1310. [8] Kasahara M, Naruse K, Sasaki S, et al. The medaka draft genome and insights into vertebrate genome evolution[J]. Nature, 2007, 447:714-719. [9] Star B, Nederbragt AJ, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system[J]. Nature, 2011, 477:7-10. [10] Henkel CV, Burgerhout E, de Wijze DL, et al. Primitive duplicate hox clusters in the European eel’s genome[J]. PLoS One, 2012, 7:e32231. [11] Henkel CV, Dirks RP, de Wijze DL, et al. 2012b. First draft genome sequence of the Japanese eel, Anguilla japonica[J]. Gene, 2012, 511:195-201. [12] Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks[J]. Nature, 2012, 484:55-61. [13] Amemiya CT, Alfoldl J, Lee AP, et al. The African coelacanth genome provides insights into tetrapod evolution[J]. Nature, 2013, 496:311-316. [14] Nakamura Y, Mori K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna[J]. Proceedings of the National Academy of Sciences, 2013, 110:11061-11066. [15] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to benthic lifestyle[J]. Nature Genetics, 2014, 46:253-260. [16] Ao J, Mu Y, Xiang L, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS genetics, 2015, 11(4):e1005118. [17] Karlsen BO, Klingan K, Emblem Å, et al. Genomic divergence between the migratory and stationary ecotypes of Atlantic cod[J]. Molecular Ecology, 2013, 22:5098-5111. [18] Toonen RJ, Puritz JB, Forsman ZH, et al. ezRAD:a simplified method for genomic genotyping in non-model organisms[J]. PeerJ, 2013, 1:e203. [19] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10:57-63. [20] Good JM. Reduced representation methods for subgenomic enrichment and next-generation sequencing[J]. Methods in Molecular Biology, 2011, 772:85-103. [21] Davey JW, Hohenlohe PA, Etter PD, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Reviews Genetics, 2011, 12:499-510. [22] Vasemagi A, Primmer CR. Challenges for identifying functionally important genetic variation:the promise of combining complementary research strategies[J]. Molecular Ecology, 2005, 14:3623-3642. [23] Campbell NR, Narum SR. Identification of novel SNPs in Chinook salmon and variation among life history types[J]. Transactions of the American Fisheries Society, 2008, 137:96-106. [24] Moen T, Hayes B, Nilsen F, et al. Identification and characterization of novel SNP markers in Atlantic cod:evidence for directional selection[J]. BMC Genetics, 2008, 9:18. [25] Hubert S, Higgins B, Borza T, et al. Development of a SNP resource and a genetic linkage map for Atlantic cod(Gadus morhua)[J]. BMC Genomics, 2010, 11:191. [26] Helyar SJ, Limborg MT, Bekkevold D, et al. SNP discovery using next generation transcriptomic sequencing in Atlantic herring(Clupea harengus)[J]. PLoS One, 2012, 7:e42089. [27] Lamichhaney S, Martinez Barrio A, Rafati N, et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring[J]. Proceedings of the National Academy of Sciences, 2012, 109:1-6. [28] Pujolar JM, Jacobsen MW, Frydenberg J, et al. A resource of genome-wide single nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel[J]. Molecular Ecology Resources, 2013, 13:706-714. [29] Khaitovich P, Enard W, Lachmann M, et al. Evolution of primate gene expression[J]. Nat Rev Genet, 2006, 7:693-702. [30] Schulte PM. Environmental adaptations as windows on molecular evolution[J]. Comparative Biochemistry and Physiology B Biochemistry & Molecular Biology, 2001, 128:597-611. [31] Fangue NA, Hofmeister M, Schulte PM. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus[J]. Journal of Experimental Biology, 2006, 209:2859-2872. [32] Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution[J]. BMC Genomics, 2007, 8:108. [33] Beaumont MA. Adaptation and speciation:what can F ST tell us?[J] . Trends in Ecology & Evolution, 2005, 20:435-440. [34] Poulsen NA, Nielsen EE, Schieruo MH, et al. Long-term stability and effective population size in North Sea and Baltic Sea cod(Ga-dus morhua)[J]. Molecular Ecology, 2006, 15:321-331. [35] Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics:finding the genes underlying ecologically important traits[J]. Heredity, 2008, 100:158-170. [36] Nielsen EE, Hemmer-Hansen J, Larsen PF, et al. Population genomics of marine fishes:identifying adaptive variation in space and time[J]. Molecular Ecology, 2009, 18:3128-3150. [37] Basu N, Todgham AE, Ackerman PA, et al. Heat shock protein genes and their functional significance in fish[J]. Gene, 2002, 295:173-183. [38] Hemmer-Hansen J, Nielsen EE, Frydenberg J, et al. Adaptive divergence in a high gene flow environment:Hsc70 variation in the European flounder(Platichthys flesus)[J]. Heredity, 2007, 99:592-600. [39] Nielsen EE, Hemmer-Hansen J, Poulsen NA, et al. Genetic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod(Gadus morhua)[J]. BMC Evoluionary Biology, 2009, 9:276. [40] Limborg MT, Helyar SJ, De Bruyn M, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring(Clupea harengus)[J]. Molecular Ecology, 2012, 21:3686-3703. [41] Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence[J]. Molecular Ecology, 2005, 14:671-688. [42] Case RAJ, Hutchinson WF, Hauser L, et al. Association between growth and Pan I* genotype within Atlantic cod full-sibling families[J]. Transactions of the American Fisheries Society, 2006, 135:241-250. [43] Jonsdottir IG, Marteinsdottir G, Pampoulie C. Relation of growth and condition with the Pan I locus in Atlantic cod(Gadus morhua L.)around Iceland[J]. Marine Biology, 2008, 154:867-874. [44] Pampoulie C, Jakobsdottir KB, Marteinsdottir G, et al. Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod(Gadus morhua L.)[J]. Behav Genet, 2008, 38:76-81. [45] Canino MF, O’Reilly PT, Hauser L, et al. Genetic differentiation in walleye pollock(Theragra chalcogramma)in response to selection at the pantophysin(Pan I)locus[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62:2519-2529. [46] Yang Z, Bielawski J. Statistical methods for detecting molecular adaptation[J]. Trends Ecol Evol, 2000, 15:496-503. [47] Streelman JT, Kocher TD. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia[J]. Physiological Genomics, 2002, 9:1-4. [48] Almuly R, Skopal T, Funkenstein B. Regulatory regions in the promoter and first intron of Sparus aurata growth hormone gene:Repression of gene activity by a polymorphic minisatellite[J]. Comp Biochem Physiol Part D Geqenomics Proteomics, 2008, 3(1):43-50. [49] Wray GA. The evolutionary significance of cis-regulatory mutation[J]. Nature Reviews Genetics, 2007, 8:206-216. [50] Nielsen EE, Hansen MM. Waking the dead:the value of popula-tion genetic analyses of historical samples[J]. Fish and Fisher-ies, 2008, 9:450-461. [51] Prufer KF, Racimo N, Patterson F, et al. The complete genome sequence of a Neanderthal from the Altai Mountains[J]. Nature, 2014, 505:43-49. [52] Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow[J]. Evolution, 2013, 67:2577-2591. [53] Hohenlohe PA, Basshan S, Etter PD, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J]. PLoS Genetics, 2010, 6:e1000862. [54] Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks[J]. Nature, 2012, 484:55-61. [55] Johannesson K, André C. Life on the margin:genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea[J]. Molecular Ecology, 2006, 15(8):2013-2029. [56] Hancock AM, Witonsky DB, Alkorta-Aranburu G, et al. Adaptations to climate-mediated selective pressures in humans[J]. PLoS Genetics, 2011, 7:e1001375. [57] Pujolar JM, Jacobsen MW, Als TD, et al. Genome-wide single-generation signatures of local selection in the panmictic European eel[J]. Molecular Ecology, 2014, 23:2514-2528. [58] Gienapp P, Teplitsky C, Alho JS, et al. Climate change and evolution:disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17:167-178. [59] Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua[J]. Evolutionary Applications, 2013, 6:690-705. [60] Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes:next-generation prospects and challenges[J]. Biological Bulletin, 2014, 227:117-132. [61] Pujolar JM, Jacobsen MW, Als TD, et al. Assessing patterns of hybridizarion between North Atlantic eels using diagnostic single nucleotide polymorphisms[J]. Heredity, 2014, 112:627-637. [62] Kijewska A, Burzynski A, Wenne R. Molecular identification of European flounder(Platichthys flesus)and its hybrids with European plaice(Pleuronectes platessa)[J]. Ices Journal of Marine Science, 2009, 66:902-906. [63] Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow[J]. Trends in Genetics, 2012, 28:342-350. [64] Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[J]. Molecular Ecology, 2014, 23:3133-3157. [65] Gompert Z, Buerkle CA. Bayesian estimation of genomic clines[J]. Molecular Ecology, 2011, 20:2111-2127. [66] Lang GI, Rice DP, Hickman MJ, et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations[J]. Nature, 2013, 500(7464):571-574. [67] Feder JL, Patrik N. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation[J]. Evolution, 2010, 64(6):1729-1747. [68] Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow[J]. Evolution, 2013, 67:2577-2591. [69] Yeaman S, Whitlock JC. The genetic architecture of adaptation under migration-selection balance[J]. Evolution, 2011, 65:1897-1911. [70] Cutter AD, Payseur BA. Genomic signatures of selection at linked sites:unifying disparity among species[J]. Nature Reviews Genetics, 2013, 14:262-274. [71] Schoener TW. The newest synthesis:understanding the interplay of evolutionary and ecological dynamics[J]. Science, 2011, 331:426. [72] Groger JP, Rountree RA, Thygesen UH, et al. Geolocation of Atlantic cod(Gadus morhua)movements in the Gulf of Maine using tidal information[J]. Fisheries Oceanography, 2007, 16, 317-335. [73] Pampoulie C, Jakobsdottir KB, Marteinsdottir G, et al. Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod(Gadus morhua L.)?[J]. Behav Genet, 2008, 38:76-81. [74] Therkildsen NO, Hemmer-Hansen J, Als TD. Microevolution in time and space:SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod[J]. Molecular Ecology, 2013, 22:2424-2440. [75] Bourret V, O’Reilly PT, Carr JW, et al. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon(Salmo salar)population following introgression by farmed escapees[J]. Heredity, 2011, 106:500-510. [76] Nielsen EE, Bekkevold D. The memory remains:application of historical DNA for scaling biodiversity loss[J]. Molecular Ecology, 2012, 21:1539-1541. [77] Ferraresso S, Bonaldo A, Parma L, et al. Exploring the larval transcriptome of the common sole(Solea solea)[J]. BMC Genomics, 2013, 14:315. [78] Dalziel AC, Schulte PM. Ecological proteomics:finding molecular markers that matter[J]. Mol Ecol, 2012, 21:3382-3384. [79] Crozier LG, Hutchings JA. Plastic and evolutionary responses to climate change in fish[J]. Evolutionary Applications, 2014, 7:68-87. [80] Hemmer-Hansen J, Therkildsen NO, Meldrup D, et al. Conservation marine biodiversity:insights from life-history trait candidate genes in Atlantic cod(Gadus morhua)[J]. Conservation Genetics, 2014, 15:213-228. [81] Limborg MT, Helyar SJ, De Bruyn M, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring(Clupea harengus)[J]. Molecular Ecology, 2012, 21:3686-3703. [82] Milano I, Babbucci M, Cariani A, et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations(Merluccius merluccius)[J]. Mol Ecol, 2014, 23:118-135. [83] McCoy RC, Garud NR, Kelley J, et al. Genomic inference accura-tely predicts the timing and severity of a recent bottleneck in a non-model insect population[J]. Mol Ecol, 2014, 23:136-150. |
[1] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[2] | ZHANG Yi-zhong, FAN Xin-qi, YANG Hui-yong, ZHANG Xiao-juan, SHAO Qiang, LIANG Du, GUO Qi, LIU Qing-shan, DU Wei-jun. Genetic Relationship Analysis of Sorghum Breeding Materials Based on Simplified Genome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 21-33. |
[3] | GUAN Jun-jiao, YANG Xiao-hong, ZHANG Jian-hua, WANG Jiang-min, ZHANG Peng, Li Yan-gang. Genetic Diversity and Population Structure Analysis of Japonica Rice Varieties from Yunnan Province [J]. Biotechnology Bulletin, 2018, 34(1): 90-96. |
[4] | YAN Lu-xi,, LI Jia-man,, YUAN Tao, ,ZHOU An-pei, ,ZONG Dan,, LI Dan, XIN Pei-yao,, ,HE Cheng-zhong,,. Genetic Diversity Analysis of Populus yunnanensis by SRAP Markers [J]. Biotechnology Bulletin, 2016, 32(4): 159-167. |
[5] | Tang Hongjie, Zhao Shengguo, Lei Zhaomin, Wang Xinrong, Wang Jianfu, Cai Yuan, Wu Jianping. Single Nucleotide Polymorphisms in A-FABP Associated with Carcass Quality and Meat Quality Traits in Five Zaosheng Cattle Groups [J]. Biotechnology Bulletin, 2014, 0(5): 96-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||