[1]H?mmerle H, Ve?erek B, Resch A, et al. Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature[J]. RNA Biol, 2013, 10(12):1834-1841. [2]Opdyke JA, Fozo EM, Hemm MR, et al. RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA[J]. J Mol Biol, 2011, 406(1):29-43. [3]Sun Y, Vanderpool CK. Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli[J]. J Bacteriol, 2013, 195(21):4804-4815. [4]Livny J, Waldor MK. Identification of small RNAs in diverse bacterial species[J]. Curr Opin Microbiol, 2007, 10(2):96-101. [5]Schaub RE, Poole SJ, Garza-Sanchez F, et al. Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs[J]. J Biol Chem, 2012, 287(35):29765-29775. [6]Ghosal A, Upadhyaya BB, Fritz JV, et al. The extracellular RNA complement of Escherichia coli[J]. Microbiologyopen, 2015.doi:10.1002/mbo3.235. [7]Hoe CH, Raabe CA, Rozhdestvensky TS, et al. Bacterial sRNA:regulation in stress[J]. Int J Med Microbiol, 2013, 303(5):217-229. [8]Chambers JR, Sauer K. Small RNAs and their role in biofilm formation[J]. Trends Microbiol, 2013, 21(1):39-49. [9]Lay D, Schu NDJ, Gottesman S. Bacterial small RNA-based negative regulation:Hfq and its accomplices[J]. Biol Chem, 2013, 288(12):7996-8003. [10]Wen Y, Feng J, Sachs G. Helicobacter pylori 5’ureB-sRNA, a cis-encoded antisense small RNA, negatively regulates ureAB expression by transcription termination[J]. J Bacteriol, 2013, 195(3):444-452. [11]Wagner EG, Altuvia S, Romby P. Antisense RNAs in bacteria and their genetic elements[J]. Adv Genet, 2002, 46:361-398. [12]Fozo EM, Makarova KS, Shabalina SA, et al. Abundance of type I toxin-antitoxin systems in bacteria:searches for new candidates and discovery of novel families[J]. Nucleic Acids Res, 2010, 38(11):3743-3759. [13]Vanderpool CK, Gottesman S. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress[J]. J Bacteriol, 2007, 189(6):2238-2248. [14]Romeo T, Vakulskas CA, Babitzke P. Post-transcriptional regulation on a global scale:form and function of Csr/Rsm systems[J]. Environ Microbiol, 2013, 15(2):313-324. [15]Chen J, Gottesman S. RNA. Riboswitch regulates RNA[J]. Science, 2014, 345(6199):876-877. [16]Semsey S, Andersson AM, Krishna S, et al. Genetic regulation of fluxes:iron homeostasis of Escherichia coli[J]. Nucleic Acids Res, 2006, 34(17):4960-4967. [17]Masse E, Vanderpool CK, Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli[J]. J Bacteriol, 2005, 187(20):6962-6971. [18]Oglesby-Sherrouse AG, Murphy ER. Iron-responsive bacterial small RNAs:variations on a theme[J]. Metallomics, 2013, 5(4):276-286. [19]Jacques JF, Jang S, Prevost K, et al. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli[J]. Mol Microbiol, 2006, 62(4):1181-1190. [20]Reinhart AA, Powell DA, Nguyen AT, et al. The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa[J]. Infect Immun, 2015, 83(3):863-875. [21]Smaldone GT, Antelmann H, Gaballa A, et al. The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases[J]. J Bacteriol, 2012, 194(10):2586-2593. [22]Metruccio MM, Fantappie L, Serruto D, et al. The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis[J]. J Bacteriol, 2009, 191(4):1330-1342. [23]Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria[J]. Microbiol Mol Biol Rev, 2006, 70(4):939-1031. [24]Muriel-Millán LF, Castellanos M, Hernandez-Eligio JA, et al. Posttranscriptional regulation of PhbR, the transcriptional activator of polyhydroxybutyrate synthesis, by iron and the sRNA ArrF in Azotobacter vinelandii[J]. Applied Microbiology and Biotechnology, 2013, 98(5):2173-2182. [25]Morita T, Kawamoto H, Mizota T, et al. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli[J]. Mol Microbiol, 2004, 54(4):1063-1075. [26]Zhang A, Wassarman KM, Rosenow C, et al. Global analysis of small RNA and mRNA targets of Hfq[J]. Mol Microbiol, 2003, 50(4):1111-1124. [27]Maki K, Morita T, Otaka H, et al. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA[J]. Mol Microbiol, 2010, 76(3):782-792. [28]Richards GR, Patel MV, Lloyd CR, et al. Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli[J]. J Bacteriol, 2013, 195(21):4816-4825. [29]Bobrovskyy M, Vanderpool CK. The small RNA SgrS:roles in metabolism and pathogenesis of enteric bacteria[J]. Front Cell Infect Microbiol, 2014, 8(4):61. [30]Rice JB, Balasubramanian D, Vanderpool CK. Small RNA binding-site multiplicity involved in translational regulation of a polycistr-onic mRNA[J]. Proc Natl Acad Sci USA, 2012, 109(40):E2691-2698. [31]Rice JB, Vanderpool CK. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes[J]. Nucleic Acids Res, 2011, 39(9):3806-3819. [32]Bobrovskyy M, Vanderpool CK. Regulation of bacterial metabolism by small RNAs using diverse mechanisms[J]. Annu Rev Genet, 2013, 47:209-232. [33]Romeo T, Gong M, Liu MY, et al. Identification and molecular characterizationof csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties[J]. J Bacteriol, 1993, 175(15):4744-4755. [34]Olga R, Pierre M, Jean-Philippe N, et al. The carbon storage regulator(Csr)system exerts a nutrient-specific control over central metabolism in Escherichia coli Strain Nissle 1917[J]. PLoS One, 2013, 8(6):e66386. [35]Sabnis NA, Yang H, Romeo T. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA[J]. J Biiological Chem, 1995, 270(49):29096-29104. [36]Camacho MI, Alvarez AF, Chavez RG, et al. Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system[J]. J Bacteriol, 2015, 197(5):983-991. [37]Suzuki K, Babitzke P, Kushner SR, et al. Identification of a novel regulatory protein(CsrD)that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E[J]. Genes Dev, 2006, 20(18):2605-2617. [38]Agaras B, Sobrero P, Valverde C. A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants[J]. Microbiology, 2013, 159(Pt2):230-242. [39]Landt SG, Lesley JA, Britos L, et al. CrfA, a small noncoding RNA regulator of adaptation to carbon starvation in Caulobacter crescentus[J]. Bacteriol, 2010, 192(18):4763-4775. [40]Stauffer LT, Stauffer GV. GcvA interacts with both the alpha and sigma subunits of RNA polymerase to activate the Escherichia coli gcvB gene and the gcvTHP operon[J]. FEMS Microbiol Lett, 2005, 242(2):333-338. [41]Pulvermacher SC, Stauffer LT, Stauffer GV. The small RNA GcvB regulates sstT mRNA expression in Escherichia coli[J]. J Bacteriol, 2009, 191(1):238-248. [42]Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli[J]. Mol Microbiol, 2000, 37(4):856-868. [43]Jonas K, Melefors O. The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium[J]. FEMS Microbiol Lett, 2009, 297(1):80-86. |