Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (3): 18-23.doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.004
• Review • Previous Articles Next Articles
MIAO Hong-xia1, SUN Pei-guang2, ZHANG Kai-xing3, JIN Zhi-qiang1, 2, XU Bi-yu1
Received:
2015-04-08
Online:
2016-03-24
Published:
2016-03-25
MIAO Hong-xia, SUN Pei-guang, ZHANG Kai-xing, JIN Zhi-qiang, XU Bi-yu. Research Progress on Expression Regulation Mechanism of Genes Encoding Granule-bound Starch Synthase in Plants[J]. Biotechnology Bulletin, 2016, 32(3): 18-23.
[1]Calvert P. Biopolymers:the structure of starch[J]. Nature, 1997, 389:338-339. [2]Zeeman SC, Kossmann J, Smith AM. Starch:its metabolism, evolution, and biotechnological modification in plants[J]. Annu Rev Plant Biol, 2010, 61:209-234. [3]Krishnan HB, Chen M. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase[J]. J Agr Food Chem, 2013, 61:5404-5409. [4]Vrinten PL, Nakamura T. Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues[J]. Plant Physiol, 2000, 122(1):255-264. [5]Dian W, Jiang H, Chen Q, et al. Cloning and characterization of the granule-bound starch synthase II gene in rice:gene expression is regulated by the nitrogen level, sugar and circadian rhythm[J]. Planta, 2003, 218:261-268. [6]Hylton CM, Denyer K, Keeling PL, et al. The effect of waxy mutations on the granule-bound starch synthases of barley and maize endosperms[J]. Planta, 1996, 198:230-237. [7]Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007, 41:6854-6859. [8]Otani M, Hamada T, Katayama K, et al. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Rep, 2007, 26:1801-1807. [9]Kimura T, Saito A. Heterogeneity of poly(A)sites in the granule-bound starch synthase I gene in sweet potato(Ipomoea batatas(L.)Lam. )[J]. Biosci Biotech Bioch, 2010, 74:667-669. [10]Dry I, Smith A, Edwards A, et al. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato[J]. Plant J, 1992, 2(2):193-202. [11]Li Z, Li D, Du X, et al. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes[J]. J Exp Bot, 2011, 62(14):5217-5231. [12]Park Y, Nemoto K, Nishikawa T, et al. Genetic diversity and expression analysis of granule bound starch synthase I gene in the new world grain amaranth(Amaranthus cruentus L. )[J]. J Cereal Sci, 2011, 53(3):298-305. [13]Cheng J, Khan MA, Qiu WM, et al. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events[J]. PLoS One, 2012, 7:1-10. [14]Wang X, Feng B, Xu Z, et al. Identification and characterization of granule bound starch synthase I(GBSSI)gene of tartary buckwheat(Fagopyrum tataricum Gaerth. )[J]. Gene, 2014, 534(2):229-235. [15]匡云波, 赖钟雄. 香蕉叶片颗粒结合性淀粉合成酶Ⅰ和可溶性淀粉合成酶Ⅲ基因的克隆与序列分析[J]. 热带作物学报, 2012(1):70-78. [16]Miao HX, Sun PG, Liu WX, et al. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit[J]. PLoS One, 2014, 9(2):88077-88085. [17]Olsen KM, Purugganan MD. Molecular evidence on the origin, evolution of glutinous rice[J]. Genetics, 2002, 162(2):941-950. [18]李枝桦, 陆春明, 卢宝荣, 等. 云南传统栽培稻品种Waxy基因序列分析[J]. 分子植物育种, 2011, 9(6):665-671. [19]Fan LJ, Quan LY, Leng XD, et al. Molecular evidence for post-domestication selection in the Waxy gene of Chinese Waxy maize[J]. Mol Breed, 2008(22):329-338. [20]田孟良, 黄玉碧, 谭功燮, 等. 西南糯玉米地方品种Waxy基因序列多态性分析[J]. 作物学报, 2008, 34(5):729-736. [21]Sano Y, Maekawa M, Kikuchi H. Temperature effects on the Wx protein level and amylose content in the endosperm of rice[J]. J Hered, 1985, 76:221-222. [22]Asare EK, B?ga M, Rossnagel BG, et al. Polymorphism in the barley granule bound starch synthase I(GbssI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60(40):10082-10092. [23]Hunt HV, Moots HM, Graybosch RA, et al. Waxy phenotype evolution in the allotetraploid cereal broomcorn miller:mutations at the GBSSI locus in their functional and phylogenetic context[J]. Mol Biol Evol, 2013, 30(1):109-122. [24]Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSSI activity in rice(Oryza sativa L. ). Plant Biotechnol J, 2014, 12(9):1297-1307. [25]Eric KA, Monica B, Brian GR, et al. Polymorphism in the barley granule bound starch synthase I(GBSSI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60:10082-10092. [26]Funnell-Harris DL, Sattler SE, O’Neill PM, et al. Effect of waxy(low amylose)on fungal infection of Sorghum grain[J]. Phytopathology, 2015, doi. org/10. 1094/PHYTO-09-14-0255-R. [27]Russell DA, Fromm ME. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice[J]. Transgenic Res, 1997, 6(2):157-168. [28]Kluth A, Sprunck S, Beeker D, et al. 5'deletion of a gbssI promoter region from wheat leads to changes in tissue and developmental specificities[J]. Plant Mol Biol, 2002, 49(6):665-678. [29]Patron NJ, Smith AM, Fahy BF, et al. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5'-noncoding region[J]. Plant Physiol, 2002, 130(1):190-198. [30]Wang SJ, Liu LF, Chen CK, et al. Regulation of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress[J]. Biol Plantarum, 2006, 50(4):537-541. [31]Heilersig BH, Loonen AE, Janssen EM, et al. Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat[J]. Mol Gen Genet, 2006, 275:437-449. [32]Schwarte S, Brust H, Steup M, et al. Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana[J]. BMC Research Notes, 2013, 6:84. [33]Hu YF, Li YP, Zhang JJ, et al. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize(Zea mays L. )endosperm[J]. J Exp Bot, 2012, 63(16):5979-5989. [34]姚彩萍, 王宗阳, 蔡秀玲, 等. 水稻蜡质基因5'上游区缺失对基因表达的影响[J]. 植物生理学报, 1996, 22(4):431-436. [35]陈丽, 王宗阳, 张景六, 等. 一个能与水稻未成熟种子核蛋白特异结合的31bp的DNA片段[J]. 植物生理学报, 1997, 23(3):257-261. [36]葛鸿飞, 王宗阳, 洪孟民. 水稻蜡质232蜡质基因转录起始位点的鉴定[J]. 遗传学报, 1995, 22(6):431-436. [37]Bansal A, Kumari V, Taneja D, et al. Molecular cloning and characterization of granule-bound starch synthase I(GBSSI)alleles from potato and sequence analysis for detection of cis-regulatory motifs[J]. Plant Cell Tiss Organ, 2012, 109:247-261. [38]Chen J, Zeng B, Zhang M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiol, 2014, 166(1):252-264. [39]Ma J, Jiang QT, Zhao QZ, et al. Characterization and expression analysis of waxy alleles in barley accessions[J]. Genetica, 2013, 141(4-6):227-238. [40]Tenorio G, Orea A, Romero JM, et al. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle[J]. Plant Mol Biol, 2003, 51(6):949-958. [41]Cai J, Yang Y, Man J, et al. Structural and functional properties of alkali-treated high-amylose rice starch[J]. Food Chem, 2014, 145:245-253. [42]Albani D, Hammond-Kosack MC, Smith C, et al. The wheat transcriptional activator SPA:a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes[J]. Plant Cell, 1997, 9(2):171-184. [43]程世军, 王宗阳, 洪孟民. 水稻bZIP蛋白REB结合Wx基因启动子的GCN4基序[J]. 中国科学(C辑), 2002, 32(1):23-29. [44]Fu FF, Xue HW. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiol, 2010, 154(2):927-938. [45]Schmidt R, Schippers JH, Mieulet D, et al. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-media-ted seedling establishment in rice[J]. Mol Plant, 2014, 7(2):404-421. [46]Liu DR, Huang WX, Cai XL. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation[J]. Plant Sci, 2013, 210:141-150. [47]Zhu Y, Cai XL, Wang ZY, et al. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene[J]. J Biol Chem, 2003, 278:47803-47811. [48]Wang JC, Xu H, Zhu Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. J Exp Bot, 2013, 64:3453-3466. [49]Zhang J, Chen J, Yi Q, et al. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm[J]. Plant Mol Biol, 2014, 84:359-369. |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[4] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[5] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[6] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[7] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[8] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[9] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[10] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[11] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[12] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[13] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[14] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[15] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||