Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (5): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2016.05.001
CHENG Fu-dong,DING Xiao,LI Sheng,SUN Xiao
Received:
2015-11-26
Online:
2016-05-25
Published:
2016-05-27
CHENG Fu-dong,DING Xiao,LI Sheng,SUN Xiao. Analysis,Comparison and Classification of Metagenomic Samples[J]. Biotechnology Bulletin, 2016, 32(5): 1-10.
[1]Huson DH, Mitra S, Ruscheweyh HJ, et al. Integrative analysis of environmental sequences using MEGAN4[J]. Genome Research, 2011, 21(9):1552-1560. [2]Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta[J]. Science, 2013, 341(6143):295-298. [3]Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585. [4]Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism[J]. J Gastroenterol Hepatol, 2013, 28(Suppl)4:9-17. [5]Qin JJ, Li YR, Cai ZM, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60. [6]Group NHW, Peterson J, Garges S, et al. The NIH human microbiome project[J]. Genome Res, 2009, 19(12):2317-2323. [7]Yang CY, Mills D, Mathee K, et al. An ecoinformatics tool for microbial community studies:supervised classification of Amplicon Length Heterogeneity(ALH)profiles of 16S rRNA[J]. Journal of Microbiological Methods, 2006, 65(1):49-62. [8]Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65. [9]Ridaura V, Belkaid Y. Gut microbiota:the link to your second brain[J]. Cell, 2015, 161(2):193-194. [10]Korem T, Zeevi D, Suez J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples[J]. Science, 2015, 349(6252):1101-1106. [11]Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7):1585-1595. [12]Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(Database issue):D590-D596. [13]Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541. [14]Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5):335-336. [15]Cole JR, Wang Q, Cardenas E, et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Res, 2009, 37(Database issue):D141-D145. [16]Brooks JP, Edwards DJ, Harwich MD, et al. The truth about metagenomics:quantifying and counteracting bias in 16S rRNA studies[J]. Bmc Microbiology, 2015, 15:66. [17]Sohn MB, An LL, Pookhao N, et al. Accurate genome relative abundance estimation for closely related species in a metagenomic sample[J]. Bmc Bioinformatics, 2014, 15:242. [18]Xia LC, Cram JA, Chen T, et al. Accurate genome relative abundance estimation based on shotgun metagenomic reads[J]. PLoS One, 2011, 6(12):e27992. [19]Yuan C, Lei J, Cole J, et al. Reconstructing 16S rRNA genes in metagenomic data[J]. Bioinformatics, 2015, 31(12):i35-43. [20]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. [21]Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1):59-60. [22]Huson DH, Richter DC, Mitra S, et al. Methods for comparative metagenomics[J]. BMC Bioinformatics, 2009, 10(Suppl)1:S12. [23]Lee J, Lee HT, Hong WY, et al. FCMM:A comparative metagenomic approach for functional characterization of multiple metagenome samples[J]. J Microbiol Methods, 2015, 115:121-128. [24]Wintermans B, Brandt B, Vandenbroucke-Grauls C, et al. TreeSeq, a fast and intuitive tool for analysis of whole genome and metagenomic sequence data[J]. PLoS One, 2015, 10(5):e0123851. [25]Liu J, Wang H, Yang H, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms[J]. Nucleic Acids Res, 2013, 41(1):e3. [26]Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes[J]. Nature Biotechnology, 2013, 31(6):533-538. [27]Kislyuk A, Bhatnagar S, Dushoff J, et al. Unsupervised statistical clustering of environmental shotgun sequences[J]. Bmc Bioinformatics, 2009, 10:316. [28]Wu YW, Ye YZ. A novel abundance-based algorithm for binning metagenomic sequences using l-tuples[J]. Journal of Computational Biology, 2011, 18(3):523-534. [29]Wang Y, Leung HCM, Yiu SM, et al. MetaCluster 5. 0:a two-round binning approach for metagenomic data for low-abundance species in a noisy sample[J]. Bioinformatics, 2012, 28(18):I356-I362. [30]Wang Y, Leung HCM, Yiu SM, et al. MetaCluster-TA:taxonomic annotation for metagenomic data based on assembly-assisted binning[J]. Bmc Genomics, 2014( Suppl1)1:S12. [31]Ding X, Cao CC, Sun X. Intrinsic correlation of oligonucleotides:a novel genomic signature for metagenome analysis[J]. J Theor Biol, 2014, 353:9-18. [32]Rodrigue S, Malmstrom RR, Berlin AM, et al. Whole genome amplification and de novo assembly of single bacterial cells[J]. PLoS One, 2009, 4(9):e6864. [33]Kodzius R, Gojobori T. Single-cell technologies in environmental omics[J]. Gene, 2016, 576(2 Pt 1):701-707. [34]Kashtan N, Roggensack SE, Rodrigue S, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus[J]. Science, 2014, 344(6182):416-420. [35]Bergquist PL, Hardiman EM, Ferrari BC, et al. Applications of flow cytometry in environmental microbiology and biotechnology[J]. Extremophiles, 2009, 13(3):389-401. [36]Lasken RS. Genomic sequencing of uncultured microorganisms from single cells[J]. Nat Rev Microbiol, 2012, 10(9):631-640. [37]Paerl HW, Xu H, Hall NS, et al. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China:will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?[J]. PLoS One, 2014, 9(11):e113123. [38]Knights D, Kuczynski J, Charlson ES, et al. Bayesian community-wide culture-independent microbial source tracking[J]. Nat Methods, 2011, 8(9):761-763. [39]Glaab E, Garibaldi JM, Krasnogor N. Learning pathway-based decision rules to classify micro array cancer samples[J]. German Conference on Conformations, 2010:123-134. [40]Asyali MH, Colak D, Demirkaya O, et al. Gene expression profile classification:a review[J]. Current Bioinformatics, 2006, 1(1):55-73. [41]Yi G, Thon MR, Sze SH. Supervised protein family classification and new family construction[J]. Journal of Computational Biology, 2012, 19(8):957-967. [42]Willner D, Thurber RV, Rohwer F. Metagenomic signatures of 86 microbial and viral metagenomes[J]. Environ Microbiol, 2009, 11(7):1752-1766. [43]Pookhao N, Sohn MB, Li Q, et al. A two-stage statistical procedure for feature selection and comparison in functional analysis of metagenomes[J]. Bioinformatics, 2015, 31(2):158-165. [44]Shafiei M, Dunn KA, Chipman H, et al. BiomeNet:a bayesian model for inference of metabolic divergence among microbial communities[J]. Plos Computational Biology, 2014, 10(11):e1003918. [45]Nielsen HB, Almeida M, Juncker AS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes[J]. Nature Biotechnology, 2014, 32(8):822-828. [46]Yu JF, Xiao K, Jiang DK, et al. An integrative method for identifying the over-annotated protein-coding genes in microbial genomes[J]. DNA Res, 2011, 18(6):435-449. [47]Yu JF, Sun X. Reannotation of protein-coding genes based on an improved graphical representation of DNA sequence[J]. J Comput Chem, 2010, 31(11):2126-2135. [48]Rocha EPC, Danchin A. Base composition bias might result from competition for metabolic resources[J]. Trends in Genetics, 2002, 18(6):291-294. [49]Raes J, Foerstner KU, Bork P. Get the most out of your metagenome:computational analysis of environmental sequence data[J]. Current Opinion in Microbiology, 2007, 10(5):490-498. [50]Pride DT, Meinersmann RJ, Wassenaar TM, et al. Evolutionary implications of microbial genome tetranucleotide frequency biases[J]. Genome Res, 2003, 13(2):145-158. [51] Chatterji S, Yamazaki I, Bai Z, et al. CompostBin:a DNA compo-sition-based algorithm for binning environmental shotgun reads[M]//Vingron M, Wong L, editor, RECOMB, LNIB 4955, 2008:17-28. [52] Ding X, Cheng F, Cao C, et al. DectICO:an alignment-free super-vised metagenomic classification method based on feature extract-ion and dynamic selection[J]. BMC Bioinformatics, 2015, 16:323. [53]Pinello L, Lo Bosco G, Yuan GC. Applications of alignment-free methods in epigenomics[J]. Brief Bioinform, 2014, 15(3):419-430. [54]Ghosh TS, Mohammed MH, Rajasingh H, et al. HabiSign:a novel approach for comparison of metagenomes and rapid identification of habitat-specific sequences[J]. BMC Bioinformatics, 2011, 12 Suppl 13:S9. [55]Liu Z, Hsiao W, Cantarel BL, et al. Sparse distance-based learning for simultaneous multiclass classification and feature selection of metagenomic data[J]. Bioinformatics, 2011, 27(23):3242-3249. [56]Cui H, Zhang X. Alignment-free supervised classification of metagenomes by recursive SVM[J]. BMC Genomics, 2013, 14:641. [57]Tanaseichuk O, Borneman J, Jiang T. Phylogeny-based classification of microbial communities[J]. Bioinformatics, 2014, 30(4):449-456. [58]Hinks TSC, Handley S, Keller B, et al. Analysis of the lung microbiome in human asthma using whole genome shot-gun metagenomics[J]. Thorax, 2013, 68:A14. |
[1] | ZHANG Yan-feng, DING Yan-ling, MA Ying, ZHOU Xiao-nan, YANG Chao-yun, SHI Yuan-gang, KANG Xiao-long. Comparative Analysis of Rumen and Fecal Microbial Characteristics Associated with Residual Feed Intake in Beef Cattle [J]. Biotechnology Bulletin, 2023, 39(1): 295-304. |
[2] | ZHANG Yu-han, FAN Yi, LI Ting-ting, PANG Shuang, LIU Wei, BAI Ke-yu, ZHANG Xi-mei. Microbial Enrichment on Leaf Surface and DNA Extraction Method Based on the Metagenomics Sequencing [J]. Biotechnology Bulletin, 2022, 38(3): 256-263. |
[3] | GUO Jing, XIE Zhan-ling, LUO Tao, XUE Zhi-feng, GUO Jian-juan, LI Fa-xiong, ZHANG Xiu-juan. Comparative Study on Endophytic Fungi Diversity of Kobresia humilis in Floccularia luteovirens [J]. Biotechnology Bulletin, 2019, 35(11): 109-117. |
[4] | SONG Wei-feng, LI Ming-cong, GAO Zheng. Research Progress on in situ Detection Methods of Microorganisms [J]. Biotechnology Bulletin, 2017, 33(10): 26-32. |
[5] | LIU Chang LUO Zhu ZHANG Meng-ru YANG Yu-mei LIU Xian GONG Ming ZOU Zhu-rong. Gene Cloning of the Orange Carotenoid Protein from Cyanobacteria,and Its Ectopic Expression and Functional Evaluation in Escherichia coli [J]. Biotechnology Bulletin, 2016, 32(7): 138-145. |
[6] | Wang Huili, Guo Anyuan. An Introduction to Metagenome Databases of Environmental Microbiology [J]. Biotechnology Bulletin, 2015, 31(11): 78-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||