[1] Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiol Rev, 2007, 31(4):425-448. [2] Halliday KJ, Martinez-Garcia JF, Josse EM. Integration of light and auxin signaling[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6):a001586. [3] Duca D, Lorv J, Patten CL, et al. Indole-3-acetic acid in plant-microbe interactions[J]. Antonie van Leeuwenhoek, 2014, 106(1):85-125. [4] Aragon IM, Perez-Martinez I, Moreno-Perez A, et al. New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi[J]. FEMS Microbiology Letters, 2014, 356(2):184-192. [5] Subramoni S, Nathoo N, Klimov E, et al. Agrobacterium tumefaciens responses to plant-derived signaling molecules[J]. Frontiers in Plant Science, 2014, 5:322. [6] Kulkarni GB, Sanjeevkumar S, Kirankumar B, et al. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea[J]. Applied Biochemistry and Biotechnology, 2013, 169(4):1292-1305. [7] Dimkpa CO, Zeng J, Mclean JE, et al. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles[J]. Applied and Environmental Microbiology, 2012, 78(5):1404-1410. [8] Kulkarni GB, Nayak AS, Sajjan SS, et al. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK[J]. Letters in Applied Microbiology, 2013, 56(5):340-347. [9] Shao J, Li S, Zhang N, et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9[J]. Microbial Cell Factories, 2015, 14:130. [10] Jijon-Moreno S, Marcos-Jimenez C, Pedraza RO, et al. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillumbrasilense[J]. Antonie van Leeuwenhoek, 2015, 107(6):1501-1517. [11] Cecagno R, Fritsch TE, Schrank IS. The plant growth-promoting bacteria Azospirillum amazonense:genomic versatility and phytohormone pathway[J]. Biomed Research International, 2015, 2015:898592. [12] Prinsen ECA, Michiels K, Vanderleyden J, et al. Azospirillum brasilense indole-3-acetic acid biosynthesis:evidence for a non-tryptophan dependent pathway[J]. Mol Plant Microbe Interact, 1993, 6:609-615. [13] Imperlini E, Bianco C, Lonardo E, et al. Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production[J]. Applied Microbiology and Biotechnology, 2009, 83(4):727-738. [14] Repar J, Sucurovic S, Zahradka K, et al. Stress resistance of Escherichia coli and Bacillus subtilis is modulated by auxins[J]. Canadian Journal of Microbiology, 2013, 59(11):766-770. [15] Donati AJ, Lee HI, Leveau JH, et al. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum[J]. PLoS One, 2013, 8(10):e76559. [16] Van Puyvelde S, Cloots L, Engelen K, et al. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response[J]. Microbial Ecology, 2011, 61(4):723-728. [17] Spaepen S, Das F, Luyten E, et al. Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512[J]. FEMS Microbiology Letters, 2009, 291(2):195-200. [18] Kochar M, Upadhyay A, Srivastava S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression[J]. Research in Microbiology, 2011, 162(4):426-435. [19] Malhotra M, Srivastava S. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion[J]. Antonie van Leeuwenhoek, 2008, 93(4):425-433. [20] Shao J, Xu Z, Zhang N, et al. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9[J]. Biology and Fertility of Soils, 2014, 51(3):321-330. [21] Chalupowicz L, Barash I, Panijel M, et al. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness ofPantoea agglomerans pv. gypsophilae[J]. Molecular Plant Microbe Interactions, 2009, 22(7):849-856. [22] Abramovitch RB, Anderson JC, Martin GB. Bacterial elicitation and evasion of plant innate immunity[J]. Nature Reviews Molecular Cell Biology, 2006, 7(8):601-611. [23] Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. [24] Redman JC, Haas BJ, Tanimoto G, et al. Development and evaluation of an Arabidopsis whole genome Affymetrix probe array[J]. The Plant Journal, 2004, 38(3):545-561. [25] Suzuki S, He Y, Oyaizu H. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch[J]. Current Microbiology, 2003, 47(2):138-143. [26] Malhotra M, Srivastava S. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth[J]. European Journal of Soil Biology, 2009, 45(1):73-80. [27] Duca D, Rose DR, Glick BR. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid[J]. Applied and Environmental Microbiology, 2014, 80(15):4640-4649. [28] Vande Broek A, Gysegom P, Ona O, et al. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression[J]. Molecular Plant Microbe Interactions, 2005, 18(4):311-323. [29] Zimmer W, Wesche M, Timmermans L. Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7:sequencing and functional analysis of the gene locus[J]. Current Microbiology, 1998, 36(6):327-331. [30] Dimkpa CO, Svatos A, Dabrowska P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. [J]. Chemosphere, 2008, 74(1):19-25. [31] Theunis M, Kobayashi H, Broughton WJ, et al. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis inRhizobium sp. strain NGR234[J]. Molecular Plant Microbe Interactions, 2004, 17(10):1153-1161. [32] Vande Broek A, Lambrecht M, Eggermont K, et al. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense[J]. Journal of Bacteriology, 1999, 181(4):1338-1342. [33] Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS[J]. Canadian Journal of Microbiology, 2002, 48(7):635-642. [34] Kang BR, Yang KY, Cho BH, et al. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS[J]. Current Microbiology, 2006, 52(6):473-476. [35] Parsons CV, Harris DM, Patten CL. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5[J]. FEMS Microbiology Letters, 2015, 362(18):fnv153. [36] Yang S, Zhang Q, Guo J, et al. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937[J]. Applied and Environmental Microbiology, 2007, 73(4):1079-1088. [37] Koul V, Adholeya A, Kochar M. Sphere of influence of indole acetic acid and nitric oxide in bacteria[J]. Journal of Basic Microbiology, 2015, 55(5):543-553. [38] Koul V, Tripathi C, Adholeya A, et al. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM[J]. Research in Microbiology, 2015, 166(3):174-185. [39] Leveau JH, Lindow SE. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290[J]. Applied and Environmental Microbiology, 2005, 71(5):2365-2371. [40] Scott JC, Greenhut IV, Leveau JH. Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid[J]. Journal of Chemical Ecology, 2013, 39(7):942-951. [41] Zuniga A, Poupin MJ, Donoso R, et al. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN[J]. Molecular Plant Microbe Interactions, 2013, 26(5):546-553. [42] Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiol Rev, 2013, 37(5):634-663. |