[1] 戴玉成, 庄剑云. 中国菌物已知种数[J]. 菌物学报, 2010, 29:625-628. [2] 戴玉成, 周丽伟, 杨祝良, 等. 中国食用菌名录[J]. 菌物学报, 2010, 29:1-21. [3] 戴玉成, 杨祝良. 中国药用真菌名录及部分名称的修订[J]. 菌物学报, 2008, 27:801-824. [4] 戴玉成, 图力古尔, 崔宝凯, 等. 中国药用真菌图志[M]. 哈尔滨:东北林业大学出版社, 2013. [5] Wu SH, Dai YC, Hattori T, et al. Species clarification for the medicinally valuable ‘sanghuang’mushroom[J]. Botanical Studies, 2012, 53:135-149. [6] 曹春蕾, 韩美玲, 崔宝凯, 等. 三种木层孔菌子实体不同溶剂提取物抗氧化活性的研究[J]. 菌物学报, 2013, 32:883-890. [7] Zhang GY, Yin QS, Han T, et al. Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis[J]. Industrial Crops and Products, 2015, 69:485-491. [8] Kim JH, Campbell BC, Mahoney N, et al. Chemosensitization of aflatoxigenic fungi to antimycin A and strobilurin using salicylaldehyde, a volatile natural compound targeting cellular antioxidation system[J]. Mycopathologia, 2011, 171:291-298. [9] Li R, Yuan C, Dong C, et al. In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2011, 383:437-445. [10] Si J, Cui BK. Study of the physiological characteristics of the medicinal mushroom Trametes pubescens(higher basidiomycetes)during the laccase-producing process[J]. International Journal of Medicinal Mushrooms, 2013, 15:199-210. [11] Ortigosa SM, Díaz-Vivancos P, Clemente-Moreno MJ, et al. Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase[J]. Planta, 2010, 232:593-605. [12] Wang WB, Kim YH, Lee HS, et al. Differential antioxidation activities in two alfalfa cultivars under chilling stress[J]. Plant Biotechnology Reports, 2009, 3:301-307. [13] Kan YJ, Chen TQ, Wu YB, et al. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology[J]. International Journal of Biological Macromolecules, 2015, 72:151-157. [14] Xu XQ, Quan LL, Shen MW. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus[J]. International Journal of Biological Macromolecules, 2015, 77:143-150. [15] Zhang HN, Ma HL, Liu W, et al. Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarius[J]. Carbohydrate Polymers, 2014, 113:380-387. [16] 程鑫颖, 包海鹰, 丁燕, 等. 瓦宁木层孔菌中多酚和黄酮类成分分离及清除自由基活性的研究[J]. 菌物学报, 2011, 30:281-287. [17] Luo JG, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilát[J]. Carbohydrate Polymers, 2010, 81:533-540. [18] 钱骅, 赵伯涛, 陈斌, 等. 桑黄子实体多糖、黄酮和多酚含量与抗氧化活性相关性[J]. 食品工业科技, 2015, 36:104-108. [19] Zhou LW, Vlasák J, Decock C, et al. Global diversity and taxonomy of the Inonotus linteus complex(Hymenochaetales, Basidiomycota):Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov. , and 17 new combinations[J]. Fungal Diversity, 2016, 77:335-347. [20] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31:426-428. [21] 司静, 崔宝凯, 戴玉成. 栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化[J]. 微生物学通报, 2011, 38:405-416. [22] 张梅梅, 魏志文, 刘玉冰, 等. Folin-Ciocalteu比色法测定桦褐孔菌多酚的条件优化[J]. 菌物学报, 2011, 30:295-304. [23] Zheng WF, Zhang MM, Zhao YX, et al. Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus[J]. Bioresource Technology, 2009, 100:1327-1335. [24] Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology, 1995, 28:25-30. [25] 李爱红, 陈鑫, 郭爱松. 白灵菇真菌多糖对衰老模型小鼠学习记忆能力、脑组织超氧化物歧化酶活性和丙二醛含量的影响[J]. 临床神经病学杂志, 2012, 25:126-128. [26] Nieto G, Huvaere K, Skibsted LH. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system[J]. European Food Research and Technology, 2011, 233:11-18. [27] 司静, 崔宝凯. 绒毛栓孔菌液体培养过程中胞外酶活性的研究[J]. 基因组学与应用生物学, 2012, 31:70-77. [28] Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. Fungal laccases[J]. Fungal Biology Reviews, 2013, 27:67-82. [29] Hamza M, Khoufi S, Sayadi S. Fungal enzymes as a powerful tool to release antioxidants from olive mill wastewater[J]. Food Chemistry, 2012, 131:1430-1436. [30] Smith H, Doyle S, Murphy R. Filamentous fungi as a source of natural antioxidants[J]. Food Chemistry, 2015, 185:389-397. [31] Xu XQ, Hu Y, Zhu LH. The capability of Inonotus obliquus for lignocellulosic biomass degradation in peanut shell and for simultaneous production of bioactive polysaccharides and polyphenols in submerged fermentation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45:2851-2858. [32] Ruktanonchai U, Bejrapha P, Sakulkhu U, et al. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid[J]. AAPS Pharmacology Science and Technology, 2009, 10:227-234. [33] Lushchak VI. Adaptive response to oxidative stress:bacteria, fungi, plants and animals[J]. Comparative Biochemistry and Physiology, Part C, 2011, 153:175-190. [34] Song Y, Hui J, Kou W, et al. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides[J]. Current Microbiology, 2008, 57:454-462. |