Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (4): 1-7.doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.001
• Orignal Article • Next Articles
TU Wen-rui, CAI Yu-meng, YAN Jing, LU Jiang ,ZHANG Ya-li
Received:
2016-07-12
Online:
2017-04-25
Published:
2017-04-25
TU Wen-rui, CAI Yu-meng, YAN Jing, LU Jiang ,ZHANG Ya-li. Research Progresses on Plant Sucrose Transporters and Physiological Functions[J]. Biotechnology Bulletin, 2017, 33(4): 1-7.
[1] Reinders A, Schulze W, Kühn C, et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. Plant Cell, 2002, 14(7):1567-1577. [2] Truernit E. Plant physiology:the importance of sucrose transporters[J]. Curr Biol, 2001, 11(5):169-171. [3] Viola R, Roberts AG, Haupt S, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading[J]. Plant Cell, 2001, 13(2):385-398. [4] Patrick JW. Phloem unloading:sieve element unloading and post-sieve element transport[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48(1):191-222. [5] Vaughn MW, Harrington GN, Bush DR. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. Proc Natl Acad Sci USA, 2002, 99(16):10876-10880. [6] Riesmeier JW, Willmitzer L, Frommer WB.Isolation and characteri-zation of a sucrose carrier cDNA from spinach by functional expression in yeast[J]. EMBO J, 1992, 11(13):4705-4713. [7] The Arabidopsis Genome Initiative. analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. [8] Srivastava AC, Ganesan S, Ismail IO, et al. Functional characteriza-tion of the Arabidopsis AtSUC2 sucrose/H1 symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long distance transport[J]. Plant Physiol, 2008, 148(1):200-211. [9] 高蕾, 肖文芳, 李文燕, 等. 拟南芥蔗糖转运蛋白(SUTs)的功能研究进展[J]. 分子植物育种, 2011, 9(2):251-255. [10] Aoki N, Hirose T, Scofield GN, et al. The sucrose transporter gene family in rice[J]. Plant Cell Physiol, 2003, 44(3):223-232. [11] 阳江华, 黄德宝, 刘术金, 等. 巴西橡胶树6个蔗糖转运蛋白基因的克隆与序列分析[J]. 热带作物学报, 2007, 28(4):32-38. [12] Shakya R, Sturm A. Characterization of source and sink specific sucrose/H+ symporters from carrot[J]. Plant Physiol, 1998, 118(4):1473-1480. [13] Noiraud N, Delrot S, Lemoine R. The sucrose transporter of celery. Identification and expression during salt stress[J]. Plant Physiol, 2000, 122(4):1447-1456. [14] Bush DR. Proton-coupled sugar and amino acid transporters in plants[J]. Annu Rev Plant Physiol Plant Mol Bio, 1993, 44(44):513-542. [15] Lemoine R. Sucrose transporters in plants:update on function and structure[J]. Biochim Biophys Acta, 2000, 1465(1-2):246-262. [16] Williams LE, Lemoine R, Sauer N, et al. Sugar transporters in higher plants:a diversity of roles and complex regulation[J]. Trends Plant Sci, 2000, 5(7):283-290. [17] Weise A, Barker L, Kühn C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity /high capacity localized in enucleate sieve elements of plants[J]. Plant Cell, 2000, 12(8):1345-1355. [18] Ward JM, Kühn C, Tegeder M, et al. Sucrose transport in higher plants[J]. Int Rev Cytol, 1998, 178(335):41-71. [19] Hackel A, Schauer N, Carrari F, et al. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways[J]. Plant J, 2006, 45(2):180-192. [20] Endler A, Meyer S, Schelbert S, et al. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach[J]. Plant Physiol, 2006, 141(1):196-207. [21] Stadler R, Brandner J, Schulz A, et al. Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells[J]. Plant Cell, 1995, 7(10):1545-1554. [22] Stadler R, Sauer N. The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells[J]. Bot Acta, 1996, 109(4):299-306. [23] Riesmeier JW, Willmitzer L, Frommer WB. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning[J]. EMBO J, 1994, 13(1):1-7. [24] Kühn C, Quick WP, Schulz A, et al. Companion cell-specific inhibition of the potato sucrose transporter SUT1[J]. Plant Cell Environ, 1996, 19(10):1115-1123. [25] Burkle L, Hibberd JM, Quick WP, et al. The H + -sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves[J]. Plant Physiol, 1998, 118(1):59-68. [26] Truernit E and Sauer N. The promoter of the Arabidopsis thaliana SUC2 sucrose-H1 symporter gene directs expression of b-glucuro-nidase to the phloem:evidence for phloem loading and unloading by SUC2[J]. Planta, 1995, 196(1):564-570. [27] Lemoine R, Kühn C, Thiele NS, et al. Antisense inhibition of the sucrose transporter in potato:effects on amount and activity[J]. Plant Cell Environ, 1996, 19(10):1124-1131. [28] Meyer S, Lauterbach C, Niedermeier M, et al. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues[J]. Plant Physiol, 2004, 134(2):684-693. [29] Weber H, Borisjuk L, Heim U, et al. A role for sucrose transporters during seed development:molecular characterization of a hexose and a sucrose carrier in fava bean seeds[J]. Plant Cell, 1997, 9 (6):895-908. [30] Bick JA, Neelam A, Smith E, et al. Expression analysis of a sucrose carrier in the germinating seedling of Ricinus communis[J]. Plant Mol Biol, 1998, 38(3):425-435. [31] Stadler R, Truernit E, Gahrtz M, et al. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube grow thin Arabidopsis[J]. Plant J, 1999, 19(3):269-278. [32] Lemoine R, Burkle L, Barker L, et al. Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco[J]. Febs Lett, 1999, 454(3):325-330. [33] Sivitz AB, Reinders A, Ward JM, et al. Arabdopsis sucrose transpo-rter AtSUC1 is important for pollen germination and sucrose indu-ced anthocyanin in accumulation[J]. Plant Physiol, 2008, 147(1):92-100. [34] Flemetakis E, Dimou M, Cotzur D, et al. A sucrose transporter, LjSUT4 is up regulated during lotus japonicas nodule development [J]. J Exp Bot, 2003, 54(388):1789-1791. [35] Smeekens S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants[J]. Plant Physiol, 1997, 115(1):7-13. [36] Matsukura C, Saitoh T, Hirose T, et al. Sugar uptake and transport in rice embryo. Expression of companion cellspecific sucrose transporter(OsSUT1)induced by sugar and light[J]. Plant Physiol, 2000, 124(1):85-93. [37] Chiou TJ, Bush DR. Sucrose is a signal molecule in assimilate partitioning[J]. Proc Natl Acad Sci USA, 1998, 95(8):4784-4788. [38] Ransom-Hodgkins WD, Vaughn MW, et al. Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter[J]. Planta, 2003, 217(3):483-489. [39] Müller J, Aeschbacher RA, Sprenger N, et al. Disaccharide mediated regulation of sucrose fructan-6-fructosyl transferase, a key enzyme of fructan synthesis in barley leaves[J]. Plant Physiol, 2000, 123(1):265-273. [40] Gabriel-Neumann E, Neumann G, Leggewie G, et al. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability[J]. J Plant Physiol, 2011, 168(9):911-919. [41] Zhang YL, Meng QY, Qu GQ, et al. The antisence expression of a putative grape sucrose transporter in tobacco and effects on growth of the transformants[J]. Prog Biochem Biophys, 2006, 7(7):699-705. [42] Bitterlich M, Krügel U, Boldt-Burisch K, et al. The sucrose transp-orter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation[J]. Plant J, 2014, 78(5):877-889. [43] Weichert N, Saalbach I, Weichert H, et al. Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis[J]. Plant Physiol, 2010, 152(2):698-710. [44] Leggewie G, Kolbe A, Lemoine R, et al. Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology[J]. Planta, 2003, 217(1):158-167. [45] Rosche E, Blackmore D, Tegeder M, et al. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons[J]. Plant J, 2002, 30(2):165-175. [46] Li H, Zhou SY, Zhao WS, et al. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance[J]. Plant Mol Biol, 2009, 69(3):337-346. [47] Brandizzi F, Frangne N, Marc-Martin S, et al. The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain[J]. Plant Cell, 2002, 14(5):1077-1092. [48] Friedrichsen DM, Joazeiro CA, Li J, et al. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase[J]. Plant Physiology, 2000, 123(4):1247-1256. [49] 邱礽, 陶刚, 李奇科, 等. 农杆菌渗入法介导的基因瞬时表达技术及应用[J]. 分子植物育种, 2009, 7(5):1032-1039. [50] 庞建周. 小麦干旱胁迫应答基因TaSUT1的克隆、表达与基因转化研究[D]. 河北:河北师范大学, 2011. [51] 高志民, 杨学文, 彭镇华, 等. 绿竹BoSUT2基因的分子特征与亚细胞定位[J]. 林业科学, 2010, 46(2):45-50. [52] Fan RC, Peng CC, Xu YH, et al. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars[J]. Plant Physiol, 2009, 150(4):1880-1901. [53] Sivitz AB, Reinders A, Johnson ME, et al. Arabidopsis sucrose transporter AtSUC9, high-affinity transport activity, intragenic control of expression, and Early Flowering Mutant Phenotype[J]. Plant Physiol, 2007, 143(1):188-198. |
[1] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[2] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[3] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[4] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[5] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[6] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[7] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[8] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[9] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[10] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[11] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[12] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[13] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[14] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[15] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||