[1] Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer:Drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 93:52-79. [2] Tian Y, Mao S. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs[J]. Expert Opin Drug Deliv, 2012, 9(6):687-700. [3] Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer[J]. Biochem Pharmacol, 2012, 83(8):1104-1111. [4] Prasad P, Cheng J, Shuhendler A, et al. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human brest cancer cells[J]. Drug Deliv Transl Res, 2012, 2(2):95-105. [5] Kapse-Mistry S, Govender T, Srivastava R, et al. Nanodrug delivery in reversing multidrug resistance in cancer cells[J]. Front Pharmacol, 2014, 5(159):1-22. [6] Deng Z, Yan F, Li L, et al. Cytotoxicity enhancement of DOX-liposome-containing microbubbles combined with ultrasound to the mufti-drug resistant cell[J]. J Acoust Soc Am, 2012, 131(4):3366. [7] Kulkarni AA, Vijaykumar VE, Natarajan SK, et al. Sustained inhibition of cMET-VEGFR2 signaling using liposome-mediated delivery increases efficacy and reduces toxicity in kidney cancer[J]. Nanomedicine, 2016, 12(7):1853-1861. [8] Huh KM, Kang HC, Lee YJ, et al. pH-sensitive polymers for drug delivery[J]. Macromolecular Research, 2012, 20(3):224-233. [9] Han H, Wang H, Chen Y, et al. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancertherapy[J]. Nanoscale, 2016, 8(1):283-291. [10] Sarisozen C, Vural I, Levchenko T, et al. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells[J]. Drug Delivery, 2012, 19(4):169-176. [11] Binkhathlan Z, Shayeganpour A, Brocks DR, et al. Encapsulation of P-glycoprotein inhibitors by polymeric micelles can reduce their pharmacokinetic interactions with doxorubicin[J]. Eur J Pharm Biopharm, 2012, 81(1):142-148. [12] Li Y, Deng Y, Tian X, et al. Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor[J]. ACS Nano, 2015, 9(10):9626-9637. [13] 丁立新, 柴佳丽, 李焕, 等. 固体脂质纳米粒的研究新进展[J]. 中国民康医学, 2014, 26(20):69-71. [14] 郭倩倩. 紫杉醇纳米脂质体的研究进展[J]. 中国药科大学学报, 2014, 45(5):599-606. [15] Ramezani M, Shamsara J. Application of DPD in the design of polymeric nano-micelles as drug carriers[J]. J Mol Graph Model, 2016, 66:1-8. [16] 梅方义. 卵磷脂/非离子表面活性剂混合胶束的制备及性质研究[D]. 无锡:江南大学, 2012. [17] Shen YA, Shyu IL, Lu M, et al. By passing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control[J]. Int J Nanomedicine, 2015, 10:2485-2502. [18] 李文渊, 童丽, 热增才旦. 纳米胶束作为药物载体的研究进展[J]. 中国执业药师, 2009, 6(12):36-40. [19] 张晓君, 王东凯, 韩晓. 聚合物胶束作为药物传递系统的研究进展[J]. 中国药剂学杂志(网络版), 2009, 7(3):177-183. [20] 苗先烽, 涂家生, 林琳. 嵌段聚合物胶束的胶束化机理与物理稳定性研究[J]. 药学与临床研究, 2008, 16(3):203-207. [21] Song HT, Hoang NH, Yun JM, et al. Development of a new tri-block copolymer with a functional end and its feasibility for treatment of metastatic breast cancer[J]. Colloids Surf B Biointerfaces, 2016, 144:73-80. [22] 庄莹, 王立权, 林嘉平. 基于非共价键作用的二嵌段共聚物/均聚物超分子体系的自组装行为[J]. 高分子学报, 2011, 11(11):1320-1328. [23] 沙静. P(AA-co-St)/PVP水相自组装大分子非共价键合胶束的研究[D]. 无锡:江南大学, 2009. [24] 向晓晓. 基于氢键自组装作用的PEA和PEO-g-P4VP纳米胶束的制备[D]. 郑州:郑州大学, 2015. [25] 张亚南. 聚电解质复合物纳米胶束的合成及性能研究[D]. 无锡:江南大学, 2014. [26] Alkan-Onyuksel H, Son K. Mixed micelles as proliposomes for the solubilization of teniposide[J]. Pharm Res, 1992, 9(12):1556-1562. [27] 郑敏. 聚醚液晶与非离子表面活性剂复配及吸附性能研究[D]. 武汉:武汉理工大学, 2007. [28] 岑桂秋. 阴/非离子表面活性剂复配体系的胶束性质及协同效应[D]. 海口:海南大学, 2012. [29] 王鹏杰, 简澍瑜, 王辰元, 等. 不同前处理条件对动态光散射检测酪蛋白胶束粒径的影响[J]. 农业工程学报, 2015, 31(14):298-302. [30] 冯怡, 沈岚, 徐德生, 等. 麦冬皂苷肠溶微球的载药量和包封率研究[J]. 中成药, 2004, 26(8):11-13. [31] 程娟. 两亲性己内酯共聚物及其胶束的制备与载药性能的研究[D]. 武汉:武汉大学, 2011. [32] 段菁华. 姜黄素聚氰基丙烯酸正丁酯纳米粒抗癌活性及逆转多药耐药研究[D]. 长沙:中南大学, 2011. [33] Lee SW, Chang DH, Shim MS, et al. Lonically fixed polymeric nanoparticles as a novel drug carrier[J]. Pharm Res, 2007, 24(8):1508-1516. [34] 邵铖祎, 郦江平, 涂家生, 等. 紫杉醇和多西紫杉醇双药胶束体外稳定性考察[J]. 中国药科大学报, 2010, 41(5):428-434. [35] Ma M, Hao Y, Liu N, et al. A novel lipid-based nanomicelle of doc-etaxel:evaluation of antitumor activity and biodistribution[J]. Int J Nanomedicine, 2012, 7:3389-3398. [36] 张静. 仿细胞膜结构聚合物交联纳米胶束的构建及其应用研究[D]. 西安:西北大学, 2010. [37] Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential[J]. Theranostics, 2016, 6(9):1306-1323. [38] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11):991-1003. [39] Liu M, Du H, Zhang W, et al. Internal stimuli-responsive nanocarriers for drug delivery:Design strategies and applications[J]. Mater Sci Eng C Mater Biol Appl, 2017, 71:1267-1280. [40] Qiu L, Hu Q, Cheng L, et al. cRGDyK modified pH responsive nanoparticles for specific intracellular delivery of doxorubicin[J]. Acta Biomater, 2016, 30:285-298. [41] 陈晓娟, 李小平, 唐忠志, 等. 羟基磷灰石纳米粒子对人胃癌细胞增殖及侵袭的影响[J]. 实用医学杂志, 2009, 25(19):3181-3183. [42] Lee Y, Mootien S, Shoen C, et al. Inhibition of mycobacterial alanine racemase activity and growth by thiazolidinones[J]. Biochem Pharmacol, 2013, 86(2):222-230. [43] 熊建文, 肖化, 张镇西. MTT法和CCK-8法检测细胞活性之测试条件比较[J]. 激光生物学报, 2007, 16(5):559-562. [44] 陈冲, 焦宁, 靖景艳. 台盼蓝拒染法、MTT法、CCK-8法在研究As 2 O 3 细胞毒性作用中的意义[J]. 中国医药导报, 2013, 10(12):24-26. [45] 刘瑶, 霍美蓉, 周建平. 还原敏感型壳聚糖胶束作为紫杉醇肿瘤递药载体的研究[C]. 南京:2012年中国药学大会暨第十二届中国药师周论文集. 2012:11. [46] 魏秀莉, 汪贻广, 曾文峰, 等. PEG-PE载药胶束的体内分布与毒性研究[J]. 东南大学学报:医学版, 2011, 30(1):11-18. [47] Zhang L, He Y, Ma G, et al. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone)triblock copolymers:in vitro and in vivo evaluation[J]. Nanomedicine, 2012, 8(6):925-934. [48] Tao Y, Han J, Wang X, et al. Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity[J]. Colloids Surf B Biointerfaces, 2013, 102:604-610. |